摘要: 前言:我所写的“操作步骤”均是代码级的,把我的字翻译成代码,就能写出来项目框架 本文原创,转载请说明 在深度学习火起来之前,传统的目标检测往往都是通过人来设计算法提取特征并喂入机器学习的SVM算法中,进行目标的定位和实例划分。为了避免知识嘈杂,大家晕头转向,我没有把一些过程名词解释出来,便于大家理清 阅读全文
posted @ 2020-02-23 20:46 淇则有岸 阅读(1087) 评论(0) 推荐(0) 编辑
该文被密码保护。 阅读全文
posted @ 2020-02-21 23:32 淇则有岸 阅读(0) 评论(0) 推荐(0) 编辑
摘要: 深度学习开源数据集 Images Analysis 图像分析 数据集介绍备注网址 Flickr30k 图片描述 31,783 images,每张图片5个语句标注 传送门 Microsoft COCO 图片描述 330,000 images,每张图片至少5个语句标注 传送门 ESP Game 多标签定 阅读全文
posted @ 2020-02-18 10:20 淇则有岸 阅读(11947) 评论(0) 推荐(0) 编辑
摘要: import pickle import numpy as np import matplotlib.pyplot as plt from sklearn.preprocessing import LabelBinarizer import os def _load_label_names(): " 阅读全文
posted @ 2020-02-16 10:54 淇则有岸 阅读(545) 评论(1) 推荐(0) 编辑
摘要: 数据集下载地址(python版):https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz 该数据集分成了几部分/批次(batches)。CIFAR-10 数据集包含 5 个部分,名称分别为 `data_batch_1`、`data_batch_ 阅读全文
posted @ 2020-02-16 10:51 淇则有岸 阅读(1800) 评论(1) 推荐(0) 编辑
摘要: 月池宁可不写随笔,也不写糊弄人的随笔 阅读全文
posted @ 2020-02-16 10:33 淇则有岸 阅读(51989) 评论(0) 推荐(5) 编辑
摘要: Word2vec模型本质:是一个用来生成词向量的、简单的神经网络模型。 通过计算相似度来降低原来输入词的维度,举个例子: 图.甲 网络结构如下: 图.乙 如乙图所示,我们一开始输入的是one-hot编码后的向量,1位于第7位,其对应的输入层到隐藏层的权重矩阵w一定是第7行,如下图示意 图.丙 丙图示 阅读全文
posted @ 2020-02-12 20:58 淇则有岸 阅读(2191) 评论(0) 推荐(0) 编辑
摘要: 标准RNN LSTM 阅读全文
posted @ 2020-02-10 20:13 淇则有岸 阅读(623) 评论(0) 推荐(0) 编辑
摘要: RNN的结构 首先,我们先来看一下RNN神经网络的结构图,左边是未展开前的,右边是展开后的。 当你代码调用static_rnn实际上是生成了rnn按时间序列展开之后的图。打开tensorboard你会看到sequence_length个rnn_cell stack在一起,只不过这些cell是shar 阅读全文
posted @ 2020-02-10 19:48 淇则有岸 阅读(703) 评论(0) 推荐(0) 编辑
摘要: tf.truncated_normal_initializer 意为:从截断的正态分布中输出随机值,如果生成的值大于平均值2个标准偏差的值则丢弃重新选择 截断的正态分布:就是规定了范围的正态分布,比如在负无穷到50之间的正态分布,或者10到200的正态分布为什么生成的值大于平均值2个标准偏差的值则丢 阅读全文
posted @ 2020-02-09 10:50 淇则有岸 阅读(3667) 评论(0) 推荐(1) 编辑