jdk1.8新特性

(1)lambda表达式(函数式接口 @FunctionalInterface)   --- > 取代 匿名内部类   如 Runnable/Comparator

(2)stream 流式计算,链式编程

 

Lambda表达式的基础语法:

  ->:称为箭头操作符,或者lambda操作符,箭头操作符把表达式拆分成两份

    左侧:表达式的参数列表

    右侧:表达式需要执行的功能, 即Lambda体

 

JAVA内置的四大函数式接口

Customer<T> 消费型接口

  void accept( T t);

 

Supplier( T t )  供给型接口

  T get();

 

Function<T, R>:函数型接口

  R apply(T t);

 

Predicate<T>:断言型接口

  boolean test(T t);

 

demo举例(工作中常用)

 

// @FunctionalInterface   Runnable 函数式接口
        Runnable runnable = new Runnable() {
            @Override
            public void run() {

            }
        };

        Thread thread = new Thread(new Runnable() {
            @Override
            public void run() {

            }
        }, "线程A");
        thread.start();

        Thread thread2 = new Thread(() -> {
            System.out.println("AAA");
        }, "线程A");
        thread2.start();

        // luma表达式出现的目的就是替换匿名内部类
        Animal animal = (name) -> {
            System.out.println(name);
            return name;
        };

        animal = new Animal() {
            @Override
            public String say(String name) {
                return null;
            }
        };

        System.out.println(animal.say("aaa"));

        List<String> aaList = Arrays.asList("1", "2", "3");
        aaList.forEach(new Consumer<String>() {
            @Override
            public void accept(String s) {
                System.out.println(s);
            }
        });

        aaList.forEach((s) -> {
            System.out.println(s);
        });

        /*===================================流式编程,链式开发========================================================*/
        List<Person> perList = Arrays.asList(new Person(12, "aaa", "2020-04-07", "nanjing"),
                new Person(12, "aaa", "2020-04-01", "nanjing"),
                new Person(12, "aaa", "2020-04-02", "nanjing"),
                new Person(12, "aaa", "2020-04-03", "nanjing"),
                new Person(12, "aaa", "2020-04-04", "nanjing"),
                new Person(13, "bbb", "2020-04-05", "beijing"),
                new Person(14, "aaa", "2020-04-06", "nanjing"));

        List<Person> perLists = new ArrayList<Person>() {
            {
                add(new Person(12, "aaa", "2020-04-01", "nanjing"));
                add(new Person(12, "aaa", "2020-04-02", "nanjing"));
                add(new Person(13, "bbb", "2020-04-03", "beijing"));
                add(new Person(14, "aaa", "2020-04-04", "nanjing"));
            }
        };

        //(1)求最小值
        perLists.stream().min(new Comparator<Person>() {
            @Override
            public int compare(Person o1, Person o2) {
                return 0;
            }
        });


        System.out.println("年龄最小值;" + perLists.stream().min((o1, o2) -> {
                    return o1.getAge() - o2.getAge();
                }
        ));
        // 年龄最小值;Optional[Person{age=12, name='aaa', birth='2020-04-01', pro='nanjing'}]

        //(2)求最大值
        System.out.println("年龄最大值对象;" + perLists.stream().max((p1, p2) -> {
            return p1.getAge() - p2.getAge();
        }).get());
        // 年龄最大值;Person{age=14, name='aaa', birth='2020-04-04', pro='nanjing'}


        //(3)过滤 12岁的年纪
        perList.stream().filter(new Predicate<Person>() {
            @Override
            public boolean test(Person person) {
                return person.getAge() == 12;
            }
        });

        List<Person> resList = perList.stream().filter((person) -> {
            return person.getAge() == 12;
        }).collect(Collectors.toList());
        System.out.println("过滤 12岁的年纪" + resList);
/*        过滤 12岁的年纪[Person{age=12, name='aaa', birth='2020-04-01', pro='nanjing'}, Person{age=12, name='aaa',
                        birth='2020-04-02', pro='nanjing'}, Person{age=12, name='aaa', birth='2020-04-02', pro='nanjing'}, Person{age=12,
                        name='aaa', birth='2020-04-02', pro='nanjing'}, Person{age=12, name='aaa', birth='2020-04-02', pro='nanjing'}]*/

        //(4)limit 过滤12岁的年纪,取前5条
        resList = perList.stream().filter((person) -> {
            return person.getAge() == 12;
        }).limit(2).collect(Collectors.toList());
        System.out.println("过滤 12岁的年纪==取前两条记录:" + resList);
//        过滤 12岁的年纪==取前两条记录:[Person{age=12, name='aaa', birth='2020-04-01', pro='nanjing'}, Person{age=12, name='aaa', birth='2020-04-02', pro='nanjing'}]

        //(5)sorted 排序后循环  foreach
        perList.stream().sorted(new Comparator<Person>() {
            @Override
            public int compare(Person o1, Person o2) {
                return 0;
            }
        }).forEach(new Consumer<Person>() {
            @Override
            public void accept(Person person) {

            }
        });

        perList.stream().sorted(new Comparator<Person>() {
            @Override
            public int compare(Person o1, Person o2) {
                return 0;
            }
        }).forEach(new Consumer<Person>() {
            @Override
            public void accept(Person person) {

            }
        });

        perList.stream().sorted((p1, p2) -> {
            return p1.getAge() - p2.getAge();
        }).forEach((person) ->{
            System.out.println(person);
        });
        /*Person{age=12, name='aaa', birth='2020-04-01', pro='nanjing'}
        Person{age=12, name='aaa', birth='2020-04-02', pro='nanjing'}
        Person{age=12, name='aaa', birth='2020-04-02', pro='nanjing'}
        Person{age=12, name='aaa', birth='2020-04-02', pro='nanjing'}
        Person{age=12, name='aaa', birth='2020-04-02', pro='nanjing'}
        Person{age=13, name='bbb', birth='2020-04-03', pro='beijing'}
        Person{age=14, name='aaa', birth='2020-04-04', pro='nanjing'}*/


        //(6)map 归类:结果一般是一组数据
        perList.stream().map(new Function<Person, Object>() {
            @Override
            public Object apply(Person person) {
                return person.getName();
            }
        }).collect(Collectors.toList());

        System.out.println(perList.stream().map((x) -> {
            return x.getName();
        }).collect(Collectors.toList()));
        // [aaa, aaa, aaa, aaa, aaa, bbb, aaa]

        List<Integer> a = perList.stream().map((person) -> {
           return person.getAge();
        }).map((x) -> {
           return x-10;
        }).collect(Collectors.toList());

        List<Integer> b = perList.stream().map((person) -> {
            return person.getAge();
        }).collect(Collectors.toList());

//        7 ) reduce: 用来计算结果,结果是一个数值
        Integer ageTotal = perList.stream().map(person -> person.getAge()).reduce(0, new BinaryOperator<Integer>() {
            @Override
            public Integer apply(Integer x, Integer y) {
                return x + y;
            }
        });
        ageTotal = perList.stream().map(person -> person.getAge()).reduce(0, ( x, y) -> x + y);  //求总和,0是基准
        System.out.println("ageTotal=======" + ageTotal); //ageTotal=======87

        Integer maxNum = perList.stream().map(person -> person.getAge()).reduce(0, (x, y) -> Integer.max(x, y));//求最大值
        System.out.println("maxNum=======" + maxNum); // maxNum=======14

//      7) collect : 将处理后的结果输出到新的集合中,如list,set,map等 ;或者返回处理的结果,如求集合的个数,平均值等
        //Collectors 计数
        Long count = perList.stream().filter(new Predicate<Person>() {
            @Override
            public boolean test(Person person) {
                return person.getAge() == 12;
            }
        }).collect(Collectors.counting());

        //Collectors set集合
        System.out.println(perList.stream().map(new Function<Person, Object>() {
            @Override
            public Object apply(Person person) {
                return person.getName();
            }
        }).collect(Collectors.toSet()));

        //Collectors 求和
        Integer totalNum = perList.stream().collect(Collectors.summingInt(new ToIntFunction<Person>() {
            @Override
            public int applyAsInt(Person value) {
                return value.getAge();
            }
        }));
        System.out.println("totalNum : " + totalNum);
//        totalNum : 87

//        8) map(A::getName).distinct : 取其中某一元素然后去重
        //取出List集合对象中某个属性集合(方法一) -- 去重distinct
        List<String> nameList = perList.stream().map(Person::getName).distinct().collect(Collectors.toList());
        System.out.println("nameList" + nameList);   // nameList[aaa, bbb]
        //取出List集合对象中某个属性集合(方法二)
        List<String> aa = perList.stream().map(person -> person.getName()).collect(Collectors.toList());
        System.out.println("nameList" + nameList);  // nameList[aaa, bbb]

        //      7) toMap
        //取出List集合对象Object中某个属性 转换成 Map<String, Object>
        Map<String, Person> map = perList.stream().collect(Collectors.toMap(Person::getBirth, ps->ps));
        System.out.println("map" + map);
        //map{2020-04-01=Person{age=12, name='aaa', birth='2020-04-01', pro='nanjing'}, 2020-04-03=Person{age=12,
        // name='aaa', birth='2020-04-03', pro='nanjing'}, 2020-04-02=Person{age=12, name='aaa', birth='2020-04-02',
        // pro='nanjing'}, 2020-04-05=Person{age=13, name='bbb', birth='2020-04-05', pro='beijing'},
        // 2020-04-04=Person{age=12, name='aaa', birth='2020-04-04', pro='nanjing'}, 2020-04-07=Person{age=12,
        // name='aaa', birth='2020-04-07', pro='nanjing'}, 2020-04-06=Person{age=14, name='aaa', birth='2020-04-06',
        // pro='nanjing'}}

        //key=name,  value = key对应的对象;注意key重复会抛出异常
//        Map<String, Person> personMap1 = perList.stream().collect(Collectors.toMap(Person::getName, Function.identity()));

        //key=name,  value = key对应的对象; key重复, 取新的key
        Map<String, Person> personMapByNew = perList.stream().collect(Collectors.toMap(Person::getName,
                Function.identity(),(oldValue, newValue)-> newValue));
        System.out.println("personMapByNew====" + personMapByNew);
        //personMapByNew===={aaa=Person{age=14, name='aaa', birth='2020-04-06', pro='nanjing'}, bbb=Person{age=13,
        // name='bbb', birth='2020-04-05', pro='beijing'}}

        //key=name,  value = key对应的对象; key重复, 取旧的key
        Map<String, Person> personMapByOld = perList.stream().collect(Collectors.toMap(Person::getName,
                Function.identity(), (oldValue, newValue)-> oldValue));
        System.out.println("personMapByOld=====" + personMapByOld);
        //personMapByOld====={aaa=Person{age=14, name='aaa', birth='2020-04-06', pro='nanjing'}, bbb=Person{age=13,
        // name='bbb', birth='2020-04-05', pro='beijing'}}

        perList.stream().filter(person -> person.getAge() == 12).limit(3)
                .collect(Collectors.toMap(Person::getBirth, Person::getName)).forEach((key, value) -> {
                System.out.println(key + "============" +value);
        });
        /*2020-04-01============aaa
        2020-04-02============aaa
        2020-04-07============aaa*/

        //(9) Optional
        // Optional的主要用处是可以有效的避免NullPointerException,配合lambda可以减少代码中大量的空指针判断,总之,代码更加优雅。

        Optional<Class<Person>> personClass = Optional.ofNullable(Person.class);
        Person ps = new Person(15, "eee", "2020-02-10", "");
        ps.setPro(Optional.ofNullable(ps.getPro()).orElse("yyy"));
        if (StrUtil.isNotBlank(Optional.ofNullable(ps).map(Person::getName).orElse(null))) {
            System.out.println("success1");
        }
        if (StrUtil.isNotBlank(Optional.ofNullable(ps).map(person -> person.getName()).orElse(null))) {
            System.out.println("success2");
        }

 

posted @ 2020-04-21 14:47  qianbing12300  阅读(227)  评论(0编辑  收藏  举报