曼哈顿距离、欧拉距离、余弦距离等
最近刚好用到距离相关的知识,于是过来回顾记录一下 ~~~
- 相信大家都非常熟悉欧拉公式了,从小到大使用的最多的距离公式,比如两点之间的距离、点到直线的距离等。
- 如今,在机器学习等领域,还有一些其他的公式也应用的非常广,例如曼哈顿距离、余弦距离、马氏距离等。
这些距离部分直观表示如下:
其中,每个距离都有自己的物理含义和应用场景。
而,闵可夫斯基距离(Minkowski Distance)可以看做是曼哈顿距离(Manhattan Distance)、欧拉距离(Euclidean Distance)和切比雪夫距离(Chebyshev Distance)的统称,当p取不同值时可以变成不同的距离公式。
参考:
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 地球OL攻略 —— 某应届生求职总结
· 提示词工程——AI应用必不可少的技术
· Open-Sora 2.0 重磅开源!
· 周边上新:园子的第一款马克杯温暖上架