大数据应用工具有哪些

互联网的迅速发展推动信息社会进入到大数据时代,大数据催生了人工智能,也加速推动了互联网的演进。再对大数据的应用中,有很多工具大大提高了工作效率,本篇文章将从大数据可视化工具和大数据分析工具分别阐述。

大数据的应用工具有哪些

 

大数据分析工具:

RapidMiner

在世界范围内,RapidMiner是比较领先的一个数据挖掘的解决方案。很大程度上,RapidMiner有比较先进的技术。RapidMiner数据挖掘的任务涉及了很多的范围,主要包括可以简化数据挖掘的过程中一些设计以及评价,还有各类数据艺术。

HPCC

某个国家为了实施信息高速路施行了一个计划,那就是HPCC。这个计划总共花费百亿美元,主要目的是开发可扩展的一些计算机系统及软件,以此来开发千兆比特的网络技术,还有支持太位级网络的传输性能,进而拓展研究同教育机构与网络连接的能力。

Hadoop

这个软件框架主要是可伸缩、高效且可靠的进行分布式的处理大量数据。Hadoop相当可靠,它假设了计算元素以及存储可能失败,基于此,它为了保证可以重新分布处理失败的节点,维护很多工作数据的副本。Hadoop可伸缩,是因为它可以对PB级数据进行处理。

Pentaho BI

Pentaho BI和传统的一些BI产品不一样,这个框架以流程作为中心,再面向Solution(解决方案)。Pentaho BI的主要目的是集成一系列API、开源软件以及企业级别的BI产品,便于商务智能的应用开发。自从Pentaho BI出现后,它使得Quartz、Jfree等面向商务智能的这些独立产品,有效的集成一起,再构成完整且复杂的一项项商务智能的解决方案。

大数据可视化工具:

Excel2016 Excel作为一个入门级工具,是快速分析数据的理想工具,也能创建供内部使用的数据图,但是Excel在颜色、线条和样式上课选择的范围有限,这也意味着用Excel很难制作出能符合专业出版物和网站需要的数据图。

SPSS 22

SPSS 22版本有强大的统计图制作功能,它不但可以绘制各种常用的统计图乃至复杂的3D视图,而且能够由制作者自定义颜色,线条,文字等,使制图变得丰富多彩,善心悦目。

Modest Maps Modest Maps是一个轻量级、可扩展的、可定制的和免费的地图显示类库,这个类库能帮助开发人员在他们自己的项目里能够与地图进行交互。 Raw Raw局域非常流行的D3.js库开发,支持很多图表类型,例如泡泡图、映射图、环图等。它可以使数据集在途、复制、粘贴、拖曳、删除于一体,并且允许我们定制化试图和层次。

R语言 R语言是主要用于统计分析、绘图的语言和操作环境。虽然R主要用于统计分析或者开发统计相关的软件,但也有用作矩阵计算。其分析速度可比美GNUOctave甚至商业软件MATLAB。

posted @ 2019-01-14 11:40  QF-董懂  阅读(475)  评论(0编辑  收藏  举报