分块详解

hzwer的9题
https://loj.ac/problem/6277
https://loj.ac/problem/6278
https://loj.ac/problem/6279
https://loj.ac/problem/6280
https://loj.ac/problem/6281
https://loj.ac/problem/6282
https://loj.ac/problem/6283
https://loj.ac/problem/6284
https://loj.ac/problem/6285

\(\text{例题会稍后放上}\)

\(\huge \text{分块是一种优雅的暴力}\)

\(\text{大概思想是这样的:维护\)\sqrt(n)\(个块 查询的时候是查询区间内的块 如果有的部分不满一个块就用枚举 常数较小}\)

\(\text{对于上面这个说明 我举个简单的例子: 假设n = 10000 那么 每个块就是\)\sqrt n$ = 100 每个块是}$

1~100
101~200
...
9901~10000

\(\text{假设要查询 2 ~ 999的值}\)

$\text{你只需要维护每个 大小 为 \(\sqrt n\) 的块 也就是 大小 为 100 的块 然后对\(101\)~\(200\) - \(801\)~\(900\)这几个块查询块的值}\( \)\text{然后暴力 \(2\)~\(100\)\(901\) ~ \(999\) 的值 }$

$\text{之所以称为优雅的暴力 分块把朴素暴力的 \(2\) ~ \(999\) 改成了 \(200\) 复杂度左右的暴力}$

$\text{个人觉得 \(2\)~\(999\)是最坏情况}$

$\text{如果查询 \(1\)~\(1000\) 那么分块的优势就出来了}$

\(\text{个人觉得比线段树简单 思想比线段树容易但是代码长(小声}\)

\(\text{一般来讲的话 分块和线段树就差一个O2(因为线段树的常数大}\)

\(\text{分块的预处理是 将每一个数字存入一个块中 复杂度是O(N)}\)

\(\text{然后区间修改查询什么的 最多不超过}\) \(2 \ \sqrt(n)\)

\(\text{证明:一个块的大小是}\)\(\sqrt(n)\) \(\text{那么多出来的左区间和右区间的最坏情况是 (\)\sqrt(n)\() 所以易证}\)

\(\text{分块的时间复杂度大概就是 }\) \(\theta (N + q * \sqrt(N))\)
(n指序列长度 q指查询修改的操作次数)
\(\text{以上就是一个基本的分块思想 简单讲 分块比线段树容易实现}\)

\(\text{分块1}\)
分块1是区间修改 单点查询

我们用一个数组维护块

如果区间修改的时候 包含这个块 那么可以把这个块加上需要修改的值 如果是多出来的就直接暴力修改了

然后查询的时候输出所在块修改的值 和 本身的值

// Isaunoya
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize("Ofast")
#include<bits/stdc++.h>
using namespace std ;
const int N = 50000 + 5 ;
const int Bl = 300 + 5 ;
struct node {
    int l , r ;
    int add ;
} ;
int n ;
int a[N] ;
node atag[Bl] ;
int bl[N] ; int unt ;
inline void change(int l , int r , int c) {
    for(register int i = l ; i <= min(bl[l] * unt , r) ; i ++)
        a[i] += c ;
    if(bl[l] != bl[r])
        for(register int i = (bl[r] - 1) * unt + 1 ; i <= r ; i ++)
            a[i] += c ;
    for(register int i = bl[l] + 1 ; i <= bl[r] - 1 ; i ++)
        atag[i].add += c ;
}
signed main() {
    ios::sync_with_stdio(false) ;
    cin >> n ;
    for(register int i = 1 ; i <= n ; i ++) cin >> a[i] ;
    unt = sqrt(n) ;
    for(register int i = 1 ; i <= n ; i ++) {
        bl[i] = (i - 1) / unt + 1 ;
    }
    for(register int i = 1 ; i <= n ; i ++) {
        int opt ;
        cin >> opt ;
        if(opt == 0) {
            int l , r , c ;
            cin >> l >> r >> c ;
            change(l , r , c) ;
        }
        else {
            int l , r , c ;
            cin >> l >> r >> c ;
            cout << a[r] + atag[bl[r]].add << endl ;
        }
    }
    return 0 ;
}

\(\text{分块2}\)

分块二求的是区间修改 区间查询小于\(c^2\)的最大数
vector 每次修改完重构一下左右块就行了

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
inline int read() {
    register int x = 0;
    register int f = 1;
    register char c;
#define gc c = getchar()
    while (isspace(gc))
        ;
    c == '-' ? gc, f = -1 : 0;
    while (x = (x << 3) + (x << 1) + (c & 15), isdigit(gc))
        ;
    return x * f;
}
const int N = 50000 + 5;
const int Bl = 300 + 5;
int n;
int a[N];
struct node {
    int add;
    std::vector<int> v;
};
node atag[Bl];
int unt;
int bl[N];
inline void reset(int x) {
    atag[x].v.clear();
    for (register int i = (x - 1) * unt + 1; i <= min(x * unt, n); i++) atag[x].v.push_back(a[i]);
    sort(atag[x].v.begin(), atag[x].v.end());
    return;
}
inline void change(int l, int r, int c) {
    for (register int i = l; i <= min(bl[l] * unt, r); i++) a[i] += c;
    reset(bl[l]);
    if (bl[l] != bl[r]) {
        for (register int i = (bl[r] - 1) * unt + 1; i <= r; i++) a[i] += c;
        reset(bl[r]);
    }
    for (register int i = bl[l] + 1; i <= bl[r] - 1; i++) atag[i].add += c;
}
inline int query(int l, int r, LL c) {
    int ans = 0;
    for (register int i = l; i <= min(bl[l] * unt, r); i++)
        if (a[i] + atag[bl[l]].add < c)
            ans++;
    if (bl[l] != bl[r]) {
        for (register int i = (bl[r] - 1) * unt + 1; i <= r; i++)
            if (a[i] + atag[bl[r]].add < c)
                ans++;
    }
    for (register int i = bl[l] + 1; i <= bl[r] - 1; i++) {
        int s = c - atag[i].add;
        ans += lower_bound(atag[i].v.begin(), atag[i].v.end(), s) - atag[i].v.begin();
    }
    return ans;
}
signed main() {
    n = read();
    unt = sqrt(n);
    for (register int i = 1; i <= n; i++) a[i] = read();
    for (register int i = 1; i <= n; i++) bl[i] = (i - 1) / unt + 1;
    for (register int i = 1; i <= n; i++) {
        atag[bl[i]].v.push_back(a[i]);
    }
    for (register int i = 1; i <= bl[n]; i++) {
        sort(atag[i].v.begin(), atag[i].v.end());
    }
    for (register int i = 1; i <= n; i++) {
        int opt = read(), L = read(), R = read(), c = read();
        if (opt)
            printf("%lld\n", query(L, R, c * c));
        else
            change(L, R, c);
    }
    return 0;
}

\(\text{分块3}\)

分块3 区间修改 询问区间内小于某个值 x的前驱即比x小的最大数

同样使用一个set维护
然后用\(lower _ \ bound\)二分
(部分C++11内容

// Isaunoya
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize("Ofast")
#pragma GCC diagnostic error "-std=c++11"
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
inline int read() {
    register int x = 0;
    register int f = 1;
    register char c;
#define gc c = getchar()
    while (isspace(gc))
        ;
    c == '-' ? gc, f = -1 : 0;
    while (x = (x << 3) + (x << 1) + (c & 15), isdigit(gc))
        ;
    return x * f;
}
const int N = 100000 + 5;
const int Bl = 400 + 5;
int n;
int a[N];
struct node {
    int add;
};
node atag[Bl];
int unt;
int bl[N];
set<int> st[Bl];
inline void change(int l, int r, int c) {
    for (register int i = l; i <= min(bl[l] * unt, r); i++) {
        st[bl[i]].erase(a[i]);
        a[i] += c;
        st[bl[i]].insert(a[i]);
    }
    if (bl[l] != bl[r]) {
        for (register int i = (bl[r] - 1) * unt + 1; i <= r; i++) {
            st[bl[i]].erase(a[i]);
            a[i] += c;
            st[bl[i]].insert(a[i]);
        }
    }
    for (register int i = bl[l] + 1; i <= bl[r] - 1; i++) atag[i].add += c;
}
inline int query(int l, int r, int c) {
    int ans = -1;
    for (register int i = l; i <= min(bl[l] * unt, r); i++)
        if (a[i] + atag[bl[l]].add < c)
            ans = max(a[i] + atag[bl[l]].add, ans);
    if (bl[l] != bl[r]) {
        for (register int i = (bl[r] - 1) * unt + 1; i <= r; i++)
            if (a[i] + atag[bl[r]].add < c)
                ans = max(a[i] + atag[bl[l]].add, ans);
    }
    for (register int i = bl[l] + 1; i <= bl[r] - 1; i++) {
        int s = c - atag[i].add;
        auto find = st[i].lower_bound(s);
        if (find == st[i].begin()) continue ;
        find--;
        ans = max(ans, *find + atag[i].add);
    }
    return ans;
}
signed main() {
    n = read();
    unt = sqrt(n);
    for (register int i = 1; i <= n; i++) a[i] = read();
    for (register int i = 1; i <= n; i++) bl[i] = (i - 1) / unt + 1;
    for (register int i = 1; i <= n; i++) {
        st[bl[i]].insert(a[i]);
    }
    for (register int i = 1; i <= n; i++) {
        int opt = read(), L = read(), R = read(), c = read();
        if (opt)
            printf("%d\n", query(L, R, c));
        else
            change(L, R, c);
    }
    return 0;
}

\({\text{分块4}}\)

分块4是区间修改 区间求和
然后 区间和 % \(c+1\)

我们考虑使用一个数组维护区间和 然后用一个数组维护整个块的修改情况

维护区间和指的是 暴力修改 的部分

// Isaunoya
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize("Ofast")
#include<bits/stdc++.h>

using namespace std ;
#define int long long
inline int read() { register int x = 0 ; register int f = 1 ; register char c ;
#define gc c = getchar()
	while(isspace(gc)) ;
	c == '-' ? gc , f = -1 : 0 ;
	while(x = (x << 1) + (x << 3) + (c ^ 48) , isdigit(gc)) ;
	return x * f ;
}

int n ;
const int N = 50000 + 5 ;
int a[N] ;
int bl[N] ;
int sum[N] ;
int atag[N] ;
int unt ;
inline void change(int l , int r , int c) {
	for(register int i = l ; i <= min(r , bl[l] * unt) ; i ++) {
		a[i] += c ;
		sum[bl[l]] += c ;
	}
	if(bl[l] != bl[r])
		for(register int i = (bl[r] - 1) * unt + 1 ; i <= r ; i ++) {
			a[i] += c ;
			sum[bl[r]] += c ;
		}
	for(register int i = bl[l] + 1 ; i <= bl[r] - 1 ; i ++) atag[i] += c ;
	return ;
}
inline int query(int l , int r , int c) { int ans = 0 ;
	for(register int i = l ; i <= min(r , bl[l] * unt) ; i ++) {
		ans += a[i] + atag[bl[l]] ;
		ans %= c ;
	}
	if(bl[l] != bl[r])
		for(register int i = (bl[r] - 1) * unt + 1 ; i <= r ; i ++) {
			ans += a[i] + atag[bl[r]] ;
			ans %= c ;
		}
	for(register int i = bl[l] + 1 ; i <= bl[r] - 1 ; i ++)
		ans = (ans + sum[i] + atag[i] * unt) % c ;
	return ans ;
}
signed main() {
	n = read() ; unt = sqrt(n) ;
	for(register int i = 1 ; i <= n ; i ++) a[i] = read() ;
	for(register int i = 1 ; i <= n ; i ++) bl[i] = (i - 1) / unt + 1 ;
	for(register int i = 1 ; i <= n ; i ++) {
		sum[bl[i]] += a[i] ;
	}
	for(register int i = 1 ;i <= n ; i ++) {
		int opt = read() ;
		if(opt == 0) {
			int l = read() , r = read() , c = read() ;
			change(l , r , c) ;
		}
		if(opt == 1) {
			int l = read() , r = read() , c = read() ;
			printf("%lld\n" , query(l , r , c + 1)) ;
		}
	}
	return 0 ;
}

\(\text{分块5}\)

分块5是区间开方 然后区间查询
对于每个块 大小最大是\(2^{31}\)

\(log(31) ≈ 5\)
所以可以得出一个块最多开方6次
也就是最大是\(6n\)
所以对于区间开方 对一个块进行开方 然后重构这个块的总和

也就是可以得出 大块修改并用一个flg数组标记这个块有没有大于1的数字(如果大于1的话还可以开方
这样可以避免很多次重复开方
那么对于没有完整块的左右区间 我们考虑先减掉原数字然后加上开方后的数字(对于乘法操作也是一样的
区间查询上面讲过了(将块的总和加上 然后暴力把左右区间求和)

// Isaunoya
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize("Ofast")
#include<bits/stdc++.h>

using namespace std ;
#define int long long
inline int read() { register int x = 0 ; register int f = 1 ; register char c ;
#define gc c = getchar()
	while(isspace(gc)) ;
	c == '-' ? gc , f = -1 : 0 ;
	while(x = (x << 1) + (x << 3) + (c ^ 48) , isdigit(gc)) ;
	return x * f ;
}

int n ;
const int N = 50000 + 5 ;
int a[N] ;
int bl[N] ;
int flg[N] ;
int sum[N] ;
int unt ;
inline void Reset(int x) {
    if(flg[x]) return ;
    flg[x] = 1 ;
    sum[x] = 0 ;
    for(register int i = (x - 1) * unt + 1 ; i <= x * unt ; i ++) {
        a[i] = sqrt(a[i]) ;
        sum[x] += a[i] ;
        if(a[i] > 1) flg[x] = 0 ;
    }
    return ;
}
inline void change(int l , int r , int c) {
    for(register int i = l ; i <= min(bl[l] * unt , r) ; i ++) {
        sum[bl[l]] -= a[i] ;
        a[i] = sqrt(a[i]) ;
        sum[bl[l]] += a[i] ;
    }
    if(bl[l] != bl[r])
        for(register int i = (bl[r] - 1) * unt + 1 ; i <= r ; i ++) {
            sum[bl[r]] -= a[i] ;
            a[i] = sqrt(a[i]) ;
            sum[bl[r]] += a[i] ;
        }
    for(register int i = bl[l] + 1 ; i <= bl[r] - 1 ; i ++) Reset(i) ;
    return ;
}
inline int query(int l , int r , int c) { int ans = 0 ;
    for(register int i = l ; i <= min(bl[l] * unt , r) ; i ++) {
        ans += a[i] ;
    }
    if(bl[l] != bl[r])
        for(register int i = (bl[r] - 1) * unt + 1 ; i <= r ; i ++) ans += a[i] ;
    for(register int i = bl[l] + 1 ; i <= bl[r] - 1 ; i ++) ans += sum[i] ;
    return ans ;
}
signed main() {
    n = read() ; unt = sqrt(n) ;
    for(register int i = 1 ; i <= n ; i ++) a[i] = read() ;
    for(register int i = 1 ; i <= n ; i ++) bl[i] = (i - 1) / unt + 1 ;
    for(register int i = 1 ; i <= n ; i ++) { sum[bl[i]] += a[i] ; }
    for(register int i = 1 ; i <= n ; i ++) {
        int opt = read() ;
        if(opt == 0) {
            int l , r , c ;
            l = read() ; r = read() ; c = read() ;
            change(l , r , c) ;
        }
        if(opt == 1) {
            int l , r , c ;
            l = read() ; r = read() ; c = read() ;
            printf("%lld\n" , query(l , r , c)) ;
        }
    }
    return 0 ;
}

\(\text{分块6}\)
分块6是可以区间插入一个数字 然后查询某个位置
(其实用不到分块 \(vector\) 可以直接做)
只是因为这一题没有区间查询 所以可以 \(vector\) 水过去
如果想好好学分块就使用分块的做法
当某个块大于 20 个块的时候 就重构块
不然查询的时候比较费劲 而且暴力复杂度比较高

// Isaunoya
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize("Ofast")
#pragma GCC diagnostic error "-std=c++11"
#include<bits/stdc++.h>

using namespace std ;
#define int long long
inline int read() { register int x = 0 ; register int f = 1 ; register char c ;
#define gc c = getchar()
	while(isspace(gc)) ;
	c == '-' ? gc , f = -1 : 0 ;
	while(x = (x << 1) + (x << 3) + (c ^ 48) , isdigit(gc)) ;
	return x * f ;
}
int n ;
int unt ;
const int N = 200000 + 5 ;
int a[N] ;
std::vector< int > v[N] ;
int st[N] ;
int top = 0 ; int m = 0 ;
pair < int  , int > query(int b) {
    int x = 1 ;
    for ( ; b > v[x].size() ; ) b -= v[x ++].size() ;
    return make_pair(x , b - 1) ;
}
inline void Rebuild() {
    top = 0 ;
    for(register int i = 1 ; i <= m ; i ++) {
        for(auto j : v[i]) st[++ top] = j ;
        v[i].clear() ;
    }
    int blo = sqrt(top) ;
    for(register int i = 1 ; i <= top ; i ++) {
        v[(i - 1) / blo + 1].push_back(st[i]) ;
    }
    m = (top - 1) / blo + 1 ;
}
inline void Insert(int x , int y) {
    pair < int , int > p = query(x) ;
    v[p.first].insert(v[p.first].begin() + p.second , y) ;
    if(v[p.first].size() > 20 * unt) Rebuild() ;
}
signed main() {
    n = read() ; unt = sqrt(n) ;
    for(register int i = 1 ; i <= n ; i ++) a[i] = read() ;
    for(register int i = 1 ; i <= n ; i ++) v[(i - 1) / unt + 1].push_back(a[i]) ;
    m = (n - 1) / unt + 1 ;
    for(register int i = 1 ; i <= n ; i ++) {
        int opt = read() ;
        if(opt == 0) {
            int l = read() , r = read() , c = read() ;
            Insert(l , r) ;
        }
        if(opt == 1) {
            int l = read() , r = read() , c = read() ;
            pair < int , int > p = query(r) ;
            printf("%d\n" , v[p.first][p.second]) ;
        }
    }
    return 0 ;
}

\(\text{分块7}\)
分块7是一题 \(\text{区间乘法 区间加法 单点查询}\) 的题目
那么我们只需要维护一下区间的值 乘法的值 加法的值就可以
如果乘法那么就需要把加法的值乘上一个值
不过在每次修改的时候 需要\(\text{重构这个不完整的块所在的块}\)
(好拗口 反正就是在\(左,右区间\)所在的块 然后把乘的值归1 然后加法的值清0
这样的话复杂度仍然还是 \(\sqrt n\)
根据这个思路的话 我写了一个区间查询的
我告诉我旁边的人:知道什么叫做单点查询吗
-- \(query(b,b)\)

// Isaunoya
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize("Ofast")
#pragma GCC diagnostic error "-std=c++11"
#include<bits/stdc++.h>

using namespace std ;
#define int long long

#define rep(i , j , n) for(register int i=j;i<=n;i++)
#define Rep(i , j , n) for(register int i=j;i>=n;i--)
#define gc c = getchar()
#define int long long
inline int read() { register int x = 0 , f = 1 ; register char c ;
    while(isspace(gc)) ; c == '-' ? f = -1 , gc : 0 ;
    while((x *= 10) += (c ^ 48) , isdigit(gc)) ;
    return x * f ;
}

using namespace std ;
int n ;
const int N = 100000 + 5 ;
const int Unt = 2000 ;
const int p = 10000 + 7 ;
int a[N] ;
int unt ;
int block[N] ;
int sum[Unt] ;
int mul[Unt] ;
int size[Unt] ;
int ans[Unt] ;
inline void reset(int x) {
    for(register int i=(x - 1) * unt + 1 ; i <= min(n , x * unt) ; i ++) {
        a[i] = (a[i] * mul[x] + sum[x]) % p ;
    }
    sum[x] = 0 ; mul[x] = 1 ;
}
inline void change_mul(int l , int r , int x) {
    reset(block[l]) ;
    for(register int i=l;i<=min(r , block[l] * unt) ; i ++) {
        ans[block[l]] -= a[i] ;
        a[i] *= x ;
        a[i] %= p ;
        ans[block[l]] += a[i] ;
        ans[block[l]] %= p ;
    }
    if(block[l] != block[r]) {
        reset(block[r]) ;
        for(register int i=(block[r] - 1) * unt + 1 ; i <= r ; i ++) {
            ans[block[r]] -= a[i] ;
            a[i] *= x ;
            a[i] %= p ;
            ans[block[r]] += a[i] ;
            ans[block[r]] %= p ;
        }
        for(register int i=block[l] + 1 ; i <= block[r] - 1 ; i ++) {
            sum[i] *= x ;
            sum[i] %= p ;
            mul[i] *= x ;
            mul[i] %= p ;
            ans[i] *= x ;
            ans[i] %= p ;
        }
    }
}
inline void change_sum(int l , int r , int x) {
    reset(block[l]) ;
    for(register int i=l ; i <= min(r , block[l] * unt) ; i ++) {
        a[i] += x ;
        a[i] %= p ;
        ans[block[l]] += x ;
    }
    if(block[l] != block[r]) {
        reset(block[r]) ;
        for(register int i = (block[r] - 1) * unt + 1 ; i <= r ; i ++) {
            a[i] += x ;
            a[i] %= p ;
            ans[block[r]] += x ;
        }
        for(register int i=block[l] + 1 ; i <= block[r] - 1 ; i ++) {
            sum[i] += x ;
            sum[i] %= p ;
            ans[i] += x * size[i] ;
        }
    }
}
inline int Query(int l , int r) {
    int Ans = 0 ;
    for(register int i=l;i<=min(r , block[l] * unt) ; i ++)
        Ans += (a[i] * mul[block[l]] + sum[block[l]] ) % p ;
    if(block[l] != block[r]) {
        for(register int i = (block[r] - 1) * unt + 1 ; i <= r ; i ++)
            Ans += (a[i] * mul[block[r]] + sum[block[r]] ) % p ;
        for(register int i = block[l] + 1 ; i <= block[r] - 1 ; i ++)
            Ans += ans[i] ;
    }
    return Ans % p ;
}
signed main() {
    n = read() ;
    unt = sqrt(n) ;
    for(register int i=1;i<=n;i++) a[i] = read() ;
    for(register int i=1;i<=n;i++) {
        block[i] = (i - 1) / unt + 1 ;
        ans[block[i]] += a[i] ;
        size[block[i]] ++ ;
    }
    for(register int i=1;i<=block[n];i++) mul[i] = 1 ;
    for(register int i=1;i<=n;i++) {
        int opt = read() ;
        if(opt == 0) {
            int a = read() , b = read() , c = read() ;
            change_sum(a , b , c) ;
        }
        if(opt == 1) {
            int a = read() , b = read() , c = read() ;
            change_mul(a , b , c) ;
        }
        if(opt == 2) {
            int a = read() , b = read() , c = read() ;
            printf("%lld\n" , Query(b , b)) ;
         }
    }
    return 0 ;
}

\(\text{分块8}\)

分块8的话是一个 查询区间有多少个\(c\) 并把整个区间改成 \(c\)

同样我们考虑判重 把每个块用一个\(flg\)数组记录当前值
然后对于左右区间的修改 把左右区间所在的块重构成之前的\(flg\)
然后修改成c 再判断左右区间有多少个c
那么对于\(\text{完整的块}\) 我们只需要 加上一个块的长度
这样就可以做到判重的效果了
对于 \(\text{完整的块}\) 我们只需要修改当前块的\(flg\)值就可以了

// Isaunoya
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize("Ofast")
#pragma GCC diagnostic error "-std=c++11"
#include<bits/stdc++.h>

using namespace std ;
#define int long long

#define rep(i , j , n) for(register int i=j;i<=n;i++)
#define Rep(i , j , n) for(register int i=j;i>=n;i--)
#define gc c = getchar()
#define int long long
inline int read() { register int x = 0 , f = 1 ; register char c ;
    while(isspace(gc)) ; c == '-' ? f = -1 , gc : 0 ;
    while((x *= 10) += (c ^ 48) , isdigit(gc)) ;
    return x * f ;
}

const int N = 100000 + 5 ;
int n ;
int a[N] ;
int unt ;
int flg[N] ;
int bl[N] ;
inline void reset(int x) {
    if(flg[x] == -1) return ;
    for(register int i = (x - 1) * unt + 1 ; i <= x * unt ; i ++) a[i] = flg[x] ;
    flg[x] = -1 ;
}
inline int solve(int l , int r , int c) { int ans = 0 ;
    reset(bl[l]) ;
    for(register int i = l ; i <= min(bl[l] * unt , r) ; i ++) {
        if(a[i] != c) a[i] = c ;
        else ans ++ ;
    }
    if(bl[l] != bl[r]) {
        reset(bl[r]) ;
        for(register int i = (bl[r] - 1) * unt + 1 ; i <= r ; i ++) {
            if(a[i] != c) a[i] = c ;
            else ans ++ ;
        }
    }
    for(register int i = bl[l] + 1 ; i <= bl[r] - 1 ; i ++) {
        if(flg[i] != -1) {
            if(flg[i] != c) flg[i] = c ;
            else ans += unt ;
        }
        else {
            for(register int j = (i - 1) * unt + 1 ; j <= i * unt ; j ++)
                if(a[j] != c) a[j] = c ;
                else ans ++ ;
            flg[i] = c ;
        }
    }
    return ans ;
}
signed main() {
    n = read() ; unt = sqrt(n) ;
    for(register int i = 1 ; i <= n ; i ++) a[i] = read() ;
    for(register int i = 1 ; i <= n ; i ++) bl[i] = (i - 1) / unt + 1 ;
    for(register int i = 1 ; i <= bl[n] ; i ++) flg[i] = -1 ;
    for(register int i = 1 ; i <= n ; i ++) {
        int l = read() , r = read() , c = read() ;
        printf("%lld\n" , solve(l , r , c)) ;
    }
    return 0 ;
}

\(\text{分块9}\)
前置知识:离线莫队
分块9的话我没想到怎么在线做
就是按每次查询的 \(l\) 排序 然后瞎搞
(大概是一个莫队的思想

// Isaunoya
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize("Ofast")
#pragma GCC diagnostic error "-std=c++11"
#include <bits/stdc++.h>

using namespace std;

#define rep(i, j, n) for (register int i = j; i <= n; i++)
#define Inc(i, j, n) for (register int i = j; i <= n; i++)
#define Rep(i, j, n) for (register int i = j; i >= n; i--)

inline int read() {
	register int x = 0, f = 1;
	register char c;
#define gc c = getchar()
	while (isspace(gc))
		;
	c == '-' ? f = -1, gc : 0;
	while ((x *= 10) += (c ^ 48), isdigit(gc))
		;
	return x * f;
}
const int N = 1e5;
int n, siz, k[N + 10], bl[N + 10];
struct Que {
	int L, r, idx;
} q[N + 10];
bool cmp(const Que &A, const Que &B) {
	return bl[A.L] ^ bl[B.L] ? A.L < B.L : A.r < B.r;
}
inline void init() {
	n = read() ;
	Inc(i, 1, n) k[i] = read() ;
	Inc(i, 1, n) {
		int x, y;
		x = read() , y = read() ;
		q[i] = (Que) {
			x, y, i
		};
	}
	siz = sqrt(n);
	Inc(i, 1, n) bl[i] = (i - 1) / siz + 1;
	sort(q + 1, q + 1 + n, cmp);
}
int rp[N + 10];
inline void disc() {
	int tmp[N + 10];
	Inc(i, 1, n) tmp[i] = k[i];
	sort(tmp + 1, tmp + 1 + n);
	int len = unique(tmp + 1, tmp + 1 + n) - tmp - 1;
	Inc(i, 1, n) rp[i] = lower_bound(tmp + 1, tmp + 1 + len, k[i]) - tmp;
}
int cur_ans, cur_num, Ans[N + 10], num[N + 10];
inline void addr(int x) {
	++num[rp[x]];
	if (num[rp[x]] >= cur_num) {
		if (num[rp[x]] == cur_num && k[x] < cur_ans)
			cur_ans = k[x];
		else if (num[rp[x]] > cur_num)
			cur_ans = k[x], cur_num = num[rp[x]];
	}
}
inline void addl(int x, int &ans, int &Num) {
	++num[rp[x]];
	if (num[rp[x]] >= Num) {
		if (num[rp[x]] == Num && k[x] < ans)
			ans = k[x];
		else if (num[rp[x]] > Num)
			ans = k[x], Num = num[rp[x]];
	}
}
inline void remove(int x) {
	--num[rp[x]];
}
inline void solv() {
	int L, r, lim;
	Inc(i, 1, n) {
		if (bl[q[i].L] ^ bl[q[i - 1].L]) {
			memset(num, 0, sizeof(num));
			L = lim = bl[q[i].L] * siz + 1;
			r = bl[q[i].L] * siz;
			cur_ans = cur_num = 0;
		}
		if (bl[q[i].L] == bl[q[i].r]) {
			int ans, nownum = 0;
			Inc(j, q[i].L, q[i].r)++ num[rp[j]];
			Inc(j, q[i].L, q[i].r) if (num[rp[j]] >= nownum) {
				if (num[rp[j]] == nownum && k[j] < ans)
					ans = k[j];
				else if (num[rp[j]] > nownum)
					ans = k[j], nownum = num[rp[j]];
			}
			Inc(j, q[i].L, q[i].r)-- num[rp[j]];
			Ans[q[i].idx] = ans;
			continue;
		}
		while (r < q[i].r) addr(++r);
		int now = cur_ans, nownum = cur_num;
		while (L > q[i].L) addl(--L, now, nownum);
		Ans[q[i].idx] = now;
		while (L < lim) remove(L++);
	}
	Inc(i, 1, n) printf("%d\n" , Ans[i]) ;
}
signed main() {
	init();
	disc();
	solv();
	return 0;
}

\(\text{例题}\)

https://loj.ac/problem/10117

\(\text{LOJ10117}\)

这题就是一个裸的树状数组 但是可以用分块做 好像更方便呢

// Isaunoya
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize("Ofast")
#include<bits/stdc++.h>
#define rep(i , j , n) for(register int i = j ; i <= n ; i ++)
#define Rep(i , j , n) for(register int i = j ; i >= n ; i --)
#define to(u) for(register int i = head[u] ; i ; i = edge[i].nxt)

inline int read() { register int x = 0 , f = 1 ; register char c ;
#define gc c = getchar()
	while(isspace(gc)) ; c == '-' ? f = -1 , gc : 0 ;
	while(x = (x << 1) + (x << 3) + (c & 15) , isdigit(gc)) ;
	return x * f ;
}

using namespace std ;
int n ;
const int N = 1e5 + 10 ;
int a[N] ;

int atag[N] ;
int bl[N] ;
int unt ;
inline void change(int l , int r) {
	for(register int i = l ; i <= min(bl[l] * unt , r) ; i ++) a[i] ^= 1 ;
	if(bl[l] != bl[r]) 
		for(register int i = (bl[r] - 1) * unt + 1 ; i <= r ; i ++) a[i] ^= 1 ;
	for(register int i = bl[l] + 1 ; i <= bl[r] - 1 ; i ++) atag[i] ^= 1 ;
	return ;
}
signed main() {
//	freopen(".in" , "r" , stdin) ; freopen(".out" , "w" , stdout) ;
	n = read() ; unt = sqrt(n) ;
	for(register int i = 1 ; i <= n ; i ++) bl[i] = (i - 1) / unt + 1 ;
	for(register int q = read() ; q -- ; ) {
		int opt = read() ;
		if(opt & 1) {
			int l = read() , r = read() ;
			change(l , r) ;
		}
		else {
			int x = read() ;
			printf("%lld\n" , a[x] ^ atag[bl[x]]) ;
		}
	}
	return 0 ;
}

https://www.luogu.org/problem/P3870
https://www.luogu.org/problem/P2574 // 双倍经验
https://www.luogu.org/problem/P2801
posted @ 2019-08-16 08:17  Isaunoya  阅读(529)  评论(0编辑  收藏  举报
TOP