Eugeny has array a = a1, a2, ..., an, consisting of n integers. Each integer ai equals to -1, or to 1. Also, he has m queries:
- Query number i is given as a pair of integers li, ri (1 ≤ li ≤ ri ≤ n).
- The response to the query will be integer 1, if the elements of array a can be rearranged so as the sum ali + ali + 1 + ... + ari = 0, otherwise the response to the query will be integer 0.
Help Eugeny, answer all his queries.
Input
The first line contains integers n and m (1 ≤ n, m ≤ 2·105). The second line contains n integers a1, a2, ..., an (ai = -1, 1). Next m lines contain Eugene's queries. The i-th line contains integers li, ri (1 ≤ li ≤ ri ≤ n).
Output
Print m integers — the responses to Eugene's queries in the order they occur in the input.
Examples
Input
2 3
1 -1
1 1
1 2
2 2
Output
0
1
0
Input
5 5
-1 1 1 1 -1
1 1
2 3
3 5
2 5
1 5
Output
0
1
0
1
0
题意:问这一组数重排后,能不能使区间[l,r]的和为0
这题就在卡输入
代码:
#include<iostream> using namespace std; int main(){ ios::sync_with_stdio(false);//c++加速语句 int n,m; cin>>n>>m; int cnt1=0,cnt2=0; while(n--){ int a; cin>>a; if(a>0) cnt1++; else cnt2++; } int minn=min(cnt1,cnt2); while(m--){ int l,r; cin>>l>>r; if((r-l+1)%2==0&&(r-l+1)/2<=minn) cout<<"1"<<endl; else cout<<"0"<<endl; } return 0; }