Processing math: 100%

bzoj 2820

\subsubsection{例题3}
\href{http://www.lydsy.com/JudgeOnline/problem.php?id=2820}{BZOJ 2820 YY的GCD}\
题目大意:求有多少数对(x,y)满足$x\in \left[ 1,n\right] ,y\in \left[ 1,m \right] (x,y)为质数
做法:
\par 首先这个题目和上一个题目不一样的地方是他需要一个特殊的转化
\text{令}
k=&min(n,m);\\
ans=&\sum_{p}^k\sum_{i=1}^n\sum_{j=1}^m\left[ (i,j)=p\right] \\
=&\sum_{p}^k\sum_{d=1}^k \mu(d)\lfloor \frac{n}{pd}\rfloor \lfloor
 \frac{m}{pd}\rfloor \\
  \text{令}T=&pd\\
  ans=&\sum_{T=1}^{k}\lfloor \frac{n}{T}\rfloor \lfloor \frac{m}{T}\rfloor \sum_{p|T}^{k}\mu(\frac{T}{p})\\
  \text{令}F(k)=&\sum_{p|T}^k\mu(\frac{T}{p})\\
  \text{则}ans=&\sum_{T=1}^kF(k)\lfloor \frac{n}{T}\rfloor \lfloor \frac{m}{T}\rfloor \\
\begin{align}
\text{令}
k=&min(n,m);\\
ans=&\sum_{p}^k\sum_{i=1}^n\sum_{j=1}^m\left[ (i,j)=p\right] \\
=&\sum_{p}^k\sum_{d=1}^k \mu(d)\lfloor \frac{n}{pd}\rfloor \lfloor
 \frac{m}{pd}\rfloor \\
  \text{令}T=&pd\\
  ans=&\sum_{T=1}^{k}\lfloor \frac{n}{T}\rfloor \lfloor \frac{m}{T}\rfloor \sum_{p|T}^{k}\mu(\frac{T}{p})\\
  \text{令}F(k)=&\sum_{p|T}^k\mu(\frac{T}{p})\\
  \text{则}ans=&\sum_{T=1}^kF(k)\lfloor \frac{n}{T}\rfloor \lfloor \frac{m}{T}\rfloor \\
  \end{align}
线性筛素数的时候对
F(k)$前缀和处理\
然后就转变为和例二???一样的做法,枚举除法的取值了\
\begin{lstlisting}[language={[ANSI]C}]

#include<iostream>
#include<cstdio>
#include<cmath>
#define N 10000000
#define ll long long 
using namespace std;
 
bool not_prime[N];
ll prime[N];
ll sum[N];
ll mu[N];
ll tot;
 
void Mu(int n){
    mu[1]=1;
    for(int i=2;i<=n;i++){
        if(!not_prime[i]){
            prime[++tot]=i;
            mu[i]=-1;
        }
        for(int j=1;prime[j]*i<=n;j++){
            not_prime[prime[j]*i]=1;
            if(i%prime[j]==0){
                mu[prime[j]*i]=0;
                break;
            }
            mu[prime[j]*i]=-mu[i];
        }
    }
    for(int i=1;i<=tot;++i)
        for(int j=1;j*prime[i]<=n;++j)
            sum[j*prime[i]]+=(ll)mu[j];
    for(int i=1;i<=n;++i)
        sum[i]+=(ll)sum[i-1];
}
 
ll ans(int n,int m){
    if(n>m)swap(n,m);
    int last,i;ll re=0;
    for(i=1;i<=n;i=last+1){
        last=min(n/(n/i),m/(m/i));
        re+=(ll)(n/i)*(m/i)*(sum[last]-sum[i-1]);
    }   
    return re;
}
 
int main(){
    Mu(N);
    int T;
    int a,b;
    scanf("%d",&T);
    while(T--){
        scanf("%d%d",&a,&b);
        ll Ans=ans(a,b);
        printf("%lld\n",Ans);
    }
    return 0;
}

\end{lstlisting}
这已经是第n次被long long卡一个小时以上了

posted @   Grary  阅读(142)  评论(0编辑  收藏  举报
编辑推荐:
· 你所不知道的 C/C++ 宏知识
· 聊一聊 操作系统蓝屏 c0000102 的故障分析
· SQL Server 内存占用高分析
· .NET Core GC计划阶段(plan_phase)底层原理浅谈
· .NET开发智能桌面机器人:用.NET IoT库编写驱动控制两个屏幕
阅读排行:
· 我干了两个月的大项目,开源了!
· 推荐一款非常好用的在线 SSH 管理工具
· 千万级的大表,如何做性能调优?
· 聊一聊 操作系统蓝屏 c0000102 的故障分析
· .NET周刊【1月第1期 2025-01-05】
博客园 首页 私信博主 编辑 关注 管理 新世界
点击右上角即可分享
微信分享提示