洛谷P5494 【模板】线段树分裂
需要的前置知识:线段树合并。
感觉会了线段树合并这个就很简单,线段树分裂就是在把一颗权值线段树值域在[x, y]的区间分裂出来单独成一个线段树,那么我们只需要从新树q和旧树p的根节点一起走,如果走到当前p被[x, y]完全包含的路径就把p的编号给q,并且把p改为0就行了,注意这里p和q要传引用,并且不能直接拿q = p这样p和q的地址会一样,所以一改开一个int类型tmp = p,q = tmp,p = 0然后我们return即可,然后注意这题卡空间需要废点优化,我们把线段树合并不需要的那一部分点存进stk数组,并且将这个结点的tr清空即可。
#include <iostream>
#include <algorithm>
#include <cstring>
#include <set>
#include <map>
#include <deque>
#include <vector>
typedef long long ll;
typedef std::pair<int, int> PII;
#define ls tr[u].l
#define rs tr[u].r
const int INF = 0x3f3f3f3f;
const int N = 2e5 + 10, M = 2e5 + 10;
int n, m;
int root[N], cnt, a[N];
int stk[N << 5], top;
struct node {
int l, r;
ll cnt;
}tr[N << 5];
inline int get() {
if(!top) {
return ++ cnt;
}
int p = stk[top --];
tr[p] = {0, 0, 0};
return p;
}
inline void pushup(int u) {
tr[u].cnt = tr[tr[u].l].cnt + tr[tr[u].r].cnt;
}
inline void build(int &u, int L, int R) {
u = get();
if(L == R) {
tr[u].cnt = a[L];
return ;
}
int mid = L + R >> 1;
build(tr[u].l, L, mid);
build(tr[u].r, mid + 1, R);
pushup(u);
}
inline void split(int &p, int &q, int L, int R, int x, int y) {
if(!q) q = get();
if(L >= x && R <= y) {
q = p;
p = 0;
return ;
}
int mid = L + R >> 1;
if(x <= mid) split(tr[p].l, tr[q].l, L, mid, x, y);
if(y > mid) split(tr[p].r, tr[q].r, mid + 1, R, x, y);
pushup(p);
pushup(q);
}
inline int merge(int p, int q, int L, int R){
if(!p) return q;
if(!q) return p;
stk[++ top] = q;
if(L == R){
tr[p].cnt += tr[q].cnt;
return p;
}
int mid = L + R >> 1;
tr[p].l = merge(tr[p].l, tr[q].l, L, mid);
tr[p].r = merge(tr[p].r, tr[q].r, mid + 1, R);
pushup(p);
return p;
}
inline void insert(int &p, int L, int R, ll x, int v) {
if(!p) p = get();
if(L == R) {
tr[p].cnt += x;
return ;
}
int mid = L + R >> 1;
if(v <= mid) insert(tr[p].l, L, mid, x, v);
else insert(tr[p].r, mid + 1, R, x, v);
pushup(p);
}
inline ll query(int p, int L, int R, int x, int y) {
if(!p) return 0;
if(L >= x && R <= y) return tr[p].cnt;
int mid = L + R >> 1;
ll res = 0;
if(x <= mid) res += query(tr[p].l, L, mid, x, y);
if(y > mid) res += query(tr[p].r, mid + 1, R, x, y);
return res;
}
inline int queryk(int p, int L, int R, ll k) {
if(L == R) return L;
int mid = L + R >> 1;
if(tr[tr[p].l].cnt < k) return queryk(tr[p].r, mid + 1, R, k - tr[tr[p].l].cnt);
return queryk(tr[p].l, L, mid, k);
}
inline void solve() {
std::cin >> n >> m;
for (int i = 1; i <= n; i ++) std::cin >> a[i];
build(root[1], 1, n);
int timestap = 1;
for (int i = 1; i <= m; i ++) {
int op;
std::cin >> op;
if (!op) {
int p, x, y;
std::cin >> p >> x >> y;
split(root[p], root[++ timestap], 1, n, x, y);
} else if (op == 1) {
int p, q;
std::cin >> p >> q;
merge(root[p], root[q], 1, n);
tr[root[i]].cnt << '\n';
} else if (op == 2) {
int p, v;
ll x;
std::cin >> p >> x >> v;
insert(root[p], 1, n, x, v);
} else if (op == 3) {
int p, x, y;
std::cin >> p >> x >> y;
std::cout << query(root[p], 1, n, x, y) << '\n';
} else {
int p;
ll k;
std::cin >> p >> k;
if(tr[root[p]].cnt < k) std::cout << "-1" << '\n';
else std::cout << queryk(root[p], 1, n, k) << '\n';
}
}
}
int main(void) {
std::ios::sync_with_stdio(false);
std::cin.tie(0);
std::cout.tie(0);
//freopen("D:\\in.txt","r",stdin); //输入重定向,输入数据将从D盘根目录下的in.txt文件中读取
int _ = 1;
//std::cin >> _;
while(_ --)
solve();
return 0;
}