2023年中国传媒大学程序设计大赛 G.跳台滑雪 线段树
因为我们发现询问的时候只对于大于差值的分数有效,所以我们可以先对读入的信息按照分数大小进行排序。做完之后如何查找题目要求的信息呢,我们考虑线段树维护区间返回最需要的信息。最主要的就是pushup写的时候注意一点怎么维护就行了。然后记得把排完序的横坐标丢进一个数组里面然后每次找大于等于差值的分数的第一个位置可以用二分去查找。
#include <iostream>
#include <cstring>
#include <iomanip>
#include <algorithm>
#include <stack>
#include <queue>
#include <numeric>
#include <cassert>
#include <bitset>
#include <cstdio>
#include <vector>
#include <unordered_set>
#include <cmath>
#include <map>
#include <unordered_map>
#include <set>
#include <deque>
#include <tuple>
#define int long long
#define all(a) a.begin(), a.end()
#define cnt0(x) __builtin_ctz(x)
#define endl '\n'
#define itn int
#define ll long long
#define ull unsigned long long
#define rep(i, a, b) for(int i = a;i <= b; i ++)
#define per(i, a, b) for(int i = a;i >= b; i --)
#define cntone(x) __builtin_popcount(x)
#define db double
#define AC main(void)
#define HYS std::ios::sync_with_stdio(false);std::cin.tie(0);std::cout.tie(0);
typedef std::pair<int, int > PII;
typedef std::pair<int, std::pair<int, int>> PIII;
typedef std::pair<ll, ll> Pll;
typedef std::pair<double, double> PDD;
typedef std::pair<double, int> PDI;
using ld = double long;
const long double eps = 1e-9;
const int N = 2e5 + 10;
const int INF = 0x3f3f3f3f;
int n , m, _;
int ans = INF;
int d1[] = {0, 0, 1, -1};
int d2[] = {1, -1, 0, 0};
struct node{
int l, r;
double x;
int id, score;
}tr[N << 2];
struct node1{
int fs;
double se;
int id;
friend bool operator < (const node1 x, const node1 y){
if(x.fs != y.fs) return x.fs < y.fs;
if(x.se != y.se) return x.se < y.se;
return x.id < y.id;
};
}a[N];
int score[N];
inline void pushup(int u){
if(tr[u << 1].x < tr[u << 1 | 1].x){
tr[u].x = tr[u << 1 | 1].x;
tr[u].id = tr[u << 1 | 1].id;
tr[u].score = tr[u << 1 | 1].score;
}
else if(tr[u << 1].x > tr[u << 1 | 1].x){
tr[u].x = tr[u << 1].x;
tr[u].id = tr[u << 1].id;
tr[u].score = tr[u << 1].score;
}
else{
if(tr[u << 1].score > tr[u << 1 | 1].score){
tr[u].x = tr[u << 1].x;
tr[u].id = tr[u << 1].id;
tr[u].score = tr[u << 1].score;
}
else if(tr[u << 1].score < tr[u << 1 | 1].score){
tr[u].x = tr[u << 1 | 1].x;
tr[u].id = tr[u << 1 | 1].id;
tr[u].score = tr[u << 1 | 1].score;
}
else{
if(tr[u << 1].id < tr[u << 1 | 1].id){
tr[u].x = tr[u << 1].x;
tr[u].id = tr[u << 1].id;
tr[u].score = tr[u << 1].score;
}
else{
tr[u].x = tr[u << 1 | 1].x;
tr[u].id = tr[u << 1 | 1].id;
tr[u].score = tr[u << 1 | 1].score;
}
}
}
}
inline void build_tree(int u, int l, int r){
tr[u] = {l, r};
if(l == r){
tr[u].x = a[l].se;
tr[u].id = a[l].id;
tr[u].score = a[l].fs;
return ;
}
int mid = l + r >> 1;
build_tree(u << 1, l, mid);
build_tree(u << 1 | 1, mid + 1, r);
pushup(u);
}
inline void pushup(node &a, node b){
if(a.x > b.x) return ;
if(a.x < b.x) a = b;
else{
if(a.score > b.score) return ;
if(a.score < b.score) a = b;
else{
if(a.id < b.id) return ;
a = b;
}
}
}
inline node query(int u, int l, int r){
if(tr[u].l >= l && tr[u].r <= r) return tr[u];
int mid = tr[u].l + tr[u].r >> 1;
node ans;
ans.id = INF;
ans.x = 0.0;
ans.score = 0ll;
if(l <= mid){
node tmp = query(u << 1, l, r);
pushup(ans, tmp);
}
if(r > mid){
node tmp = query(u << 1 | 1, l, r);
pushup(ans, tmp);
}
return ans;
}
int g[N];
inline void solve(){
int k;
std::cin >> n >> m >> k;
double mx = 0;
int pos = INF;
int sc = 0;
int mxs = 0;
for(int i = 1; i <= n; i ++){
std::cin >> a[i].se >> a[i].fs;
a[i].id = i - 1;
if(a[i].se > mx){
mx = a[i].se;
pos = i - 1;
sc = a[i].fs;
}else if(a[i].se == mx){
if(a[i].fs > sc){
mx = a[i].se;
pos = i - 1;
sc = a[i].fs;
}else if(a[i].fs == sc){
if(pos < a[i].id) continue;
sc = a[i].fs;
mx = a[i].se;
pos = i - 1;
}
}
mxs = std::max(mxs, a[i].fs);
}
std::sort(a + 1, a + n + 1);
for(int i = 1; i <= n; i ++) g[i] = a[i].fs;
build_tree(1, 1, n);
for(int i = 1; i <= m; i ++) std::cin >> score[i];
std::sort(score + 1, score + m + 1, std::greater<int>());
while(k --){
int rk, s;
std::cin >> s >> rk;
if(rk > m || score[rk] <= s){
std::cout << pos << '\n';
continue;
}
int c = score[rk] - s;
if(c > mxs){
std::cout << -1 << '\n';
continue;
}
int position = std::lower_bound(g + 1, g + n + 1, c) - g;
node ans = query(1, position, n);
std::cout << ans.id << '\n';
}
}
signed AC{
HYS
_ = 1;
//std::cin >> _;
while(_ --)
solve();
return 0;
}