Kafka消费者 批量消费 手动提交ACK

一次性拉取多条数据,消费后再手动提交ACK,因为要保存到数据库去, 这过程如果失败的话, 需要重新消费这些数据

所以 配置的时候,KAFKA不能自动提交 ,

批量消费数据

1.设置ENABLE_AUTO_COMMIT_CONFIG=false,禁止自动提交
2.设置AckMode=MANUAL_IMMEDIATE
3.监听方法加入Acknowledgment ack 参数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
package com.zenlayer.ad.kafuka;
  
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.apache.kafka.common.serialization.StringSerializer;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.annotation.EnableKafka;
import org.springframework.kafka.config.ConcurrentKafkaListenerContainerFactory;
import org.springframework.kafka.config.KafkaListenerContainerFactory;
import org.springframework.kafka.core.DefaultKafkaConsumerFactory;
import org.springframework.kafka.core.DefaultKafkaProducerFactory;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.kafka.core.ProducerFactory;
import org.springframework.kafka.listener.AbstractMessageListenerContainer;
  
import java.util.HashMap;
import java.util.Map;
  
@Configuration
@EnableKafka
public class KafkaConfiguration {
    /**
     * @author zhff
     * @version 2019/9/1 下午04:07
     */
    @Value("${spring.kafka.bootstrap-servers}")
    private String bootstrapServers;
  
    @Value("${spring.kafka.consumer.enable-auto-commit}")
    private Boolean autoCommit;
  
    @Value("${spring.kafka.consumer.auto-commit-interval}")
    private Integer autoCommitInterval;
  
    @Value("${spring.kafka.consumer.group-id}")
    private String groupId;
  
    @Value("${spring.kafka.consumer.max-poll-records}")
    private Integer maxPollRecords;
  
    @Value("${spring.kafka.consumer.auto-offset-reset}")
    private String autoOffsetReset;
  
    @Value("${spring.kafka.producer.retries}")
    private Integer retries;
  
    @Value("${spring.kafka.producer.batch-size}")
    private Integer batchSize;
  
    @Value("${spring.kafka.producer.buffer-memory}")
    private Integer bufferMemory;
  
    /**
     * 生产者配置信息
     */
    @Bean
    public Map<String, Object> producerConfigs() {
        Map<String, Object> props = new HashMap<String, Object>();
        props.put(ProducerConfig.ACKS_CONFIG, "0");//默认为1,all和-1都是消费在服务副本里 也已经接收成功,防止数据丢失
        props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
        props.put(ProducerConfig.RETRIES_CONFIG, retries);
        props.put(ProducerConfig.BATCH_SIZE_CONFIG, batchSize);
        props.put(ProducerConfig.LINGER_MS_CONFIG, 1);
        props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, bufferMemory);
        props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
        props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
        return props;
    }
  
    /**
     * 生产者工厂
     */
    @Bean
    public ProducerFactory<String, String> producerFactory() {
        return new DefaultKafkaProducerFactory<>(producerConfigs());
    }
  
    /**
     * 生产者模板
     */
    @Bean
    public KafkaTemplate<String, String> kafkaTemplate() {
        return new KafkaTemplate<>(producerFactory());
    }
  
    /**
     * 消费者配置信息
     */
    @Bean
    public Map<String, Object> consumerConfigs() {
        Map<String, Object> props = new HashMap<String, Object>();
        props.put(ConsumerConfig.GROUP_ID_CONFIG, groupId);
        props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, autoOffsetReset);
        props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
        props.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, maxPollRecords);
        props.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, maxPollRecords);
        props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, autoCommit);// 手动提交 配置 false
        props.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, 120000);
        props.put(ConsumerConfig.REQUEST_TIMEOUT_MS_CONFIG, 180000);
        props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
        props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
  
        return props;
    }
  
    /**
     * 消费者批量工程
     */
    @Bean
    public KafkaListenerContainerFactory<?> batchFactory() {
        ConcurrentKafkaListenerContainerFactory<Integer, String> factory = new ConcurrentKafkaListenerContainerFactory<>();
        factory.setConsumerFactory(new DefaultKafkaConsumerFactory<>(consumerConfigs()));
        // 设置为批量消费,每个批次数量在Kafka配置参数中设置ConsumerConfig.MAX_POLL_RECORDS_CONFIG
        factory.setBatchListener(true);
        factory.setConcurrency(4);
        factory.getContainerProperties().setAckMode(AbstractMessageListenerContainer.AckMode.MANUAL_IMMEDIATE);
        factory.getContainerProperties().setPollTimeout(30000);
        return factory;
    }
}

 

配置文件    也可以把手动提交配置 写成这样 

ack-mode: MANUAL_IMMEDIATE
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
spring:
  kafka:
    bootstrap-servers: 192.168.1.125:9092 192.168.1.126:9092 192.168.1.127:9092
    producer:
      # 重试次数
      retries: 3
      # 批量发送的消息数量
      batch-size: 16384
      # 32MB的批处理缓冲区
      buffer-memory: 33554432
      key-serializer: org.apache.kafka.common.serialization.StringSerializer
      value-serializer: org.apache.kafka.common.serialization.StringSerializer
    consumer:
      # 默认消费者组
      group-id: 0
      # 最早未被消费的offset
      auto-offset-reset: earliest
      # 批量一次最大拉取数据量
      max-poll-records: 3000
      # 自动提交时间间隔, 这种直接拉到数据就提交 容易丢数据
      auto-commit-interval: 2000
      # 禁止自动提交
      enable-auto-commit: false
      # 批量拉取间隔,要大于批量拉取数据的处理时间,时间间隔太小会有重复消费
      max.poll.interval.ms: 5000
topicName:
  topic2: topic_collect1
  topic5: topic_collect111

  消费的方法如下, 方法比较简单

 

1
2
3
4
5
6
7
8
9
10
@KafkaListener(id = "0", topics = "topic_collect", containerFactory = "batchFactory")
public void listen100(List<ConsumerRecord<String, String>> records, Acknowledgment ack) {
    System.out.println(records.size() + "条数被消费");
    try {
        batchConsumer(records);
        ack.acknowledge();
    } catch (Exception ex) {
        logger.error("消费数据出错 ", ex.getStackTrace());
    }
}

  

 

posted @   羽毛球打的贼好  阅读(6204)  评论(0编辑  收藏  举报
编辑推荐:
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
阅读排行:
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
点击右上角即可分享
微信分享提示