Kafka消费者 批量消费 手动提交ACK
一次性拉取多条数据,消费后再手动提交ACK,因为要保存到数据库去, 这过程如果失败的话, 需要重新消费这些数据
所以 配置的时候,KAFKA不能自动提交 ,
批量消费数据
1.设置ENABLE_AUTO_COMMIT_CONFIG=false,禁止自动提交
2.设置AckMode=MANUAL_IMMEDIATE
3.监听方法加入Acknowledgment ack 参数
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 | package com.zenlayer.ad.kafuka; import org.apache.kafka.clients.consumer.ConsumerConfig; import org.apache.kafka.clients.producer.ProducerConfig; import org.apache.kafka.common.serialization.StringDeserializer; import org.apache.kafka.common.serialization.StringSerializer; import org.springframework.beans.factory.annotation.Value; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import org.springframework.kafka.annotation.EnableKafka; import org.springframework.kafka.config.ConcurrentKafkaListenerContainerFactory; import org.springframework.kafka.config.KafkaListenerContainerFactory; import org.springframework.kafka.core.DefaultKafkaConsumerFactory; import org.springframework.kafka.core.DefaultKafkaProducerFactory; import org.springframework.kafka.core.KafkaTemplate; import org.springframework.kafka.core.ProducerFactory; import org.springframework.kafka.listener.AbstractMessageListenerContainer; import java.util.HashMap; import java.util.Map; @Configuration @EnableKafka public class KafkaConfiguration { /** * @author zhff * @version 2019/9/1 下午04:07 */ @Value ( "${spring.kafka.bootstrap-servers}" ) private String bootstrapServers; @Value ( "${spring.kafka.consumer.enable-auto-commit}" ) private Boolean autoCommit; @Value ( "${spring.kafka.consumer.auto-commit-interval}" ) private Integer autoCommitInterval; @Value ( "${spring.kafka.consumer.group-id}" ) private String groupId; @Value ( "${spring.kafka.consumer.max-poll-records}" ) private Integer maxPollRecords; @Value ( "${spring.kafka.consumer.auto-offset-reset}" ) private String autoOffsetReset; @Value ( "${spring.kafka.producer.retries}" ) private Integer retries; @Value ( "${spring.kafka.producer.batch-size}" ) private Integer batchSize; @Value ( "${spring.kafka.producer.buffer-memory}" ) private Integer bufferMemory; /** * 生产者配置信息 */ @Bean public Map<String, Object> producerConfigs() { Map<String, Object> props = new HashMap<String, Object>(); props.put(ProducerConfig.ACKS_CONFIG, "0" ); //默认为1,all和-1都是消费在服务副本里 也已经接收成功,防止数据丢失 props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers); props.put(ProducerConfig.RETRIES_CONFIG, retries); props.put(ProducerConfig.BATCH_SIZE_CONFIG, batchSize); props.put(ProducerConfig.LINGER_MS_CONFIG, 1 ); props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, bufferMemory); props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer. class ); props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer. class ); return props; } /** * 生产者工厂 */ @Bean public ProducerFactory<String, String> producerFactory() { return new DefaultKafkaProducerFactory<>(producerConfigs()); } /** * 生产者模板 */ @Bean public KafkaTemplate<String, String> kafkaTemplate() { return new KafkaTemplate<>(producerFactory()); } /** * 消费者配置信息 */ @Bean public Map<String, Object> consumerConfigs() { Map<String, Object> props = new HashMap<String, Object>(); props.put(ConsumerConfig.GROUP_ID_CONFIG, groupId); props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, autoOffsetReset); props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers); props.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, maxPollRecords); props.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, maxPollRecords); props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, autoCommit); // 手动提交 配置 false props.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, 120000 ); props.put(ConsumerConfig.REQUEST_TIMEOUT_MS_CONFIG, 180000 ); props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer. class ); props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer. class ); return props; } /** * 消费者批量工程 */ @Bean public KafkaListenerContainerFactory<?> batchFactory() { ConcurrentKafkaListenerContainerFactory<Integer, String> factory = new ConcurrentKafkaListenerContainerFactory<>(); factory.setConsumerFactory( new DefaultKafkaConsumerFactory<>(consumerConfigs())); // 设置为批量消费,每个批次数量在Kafka配置参数中设置ConsumerConfig.MAX_POLL_RECORDS_CONFIG factory.setBatchListener( true ); factory.setConcurrency( 4 ); factory.getContainerProperties().setAckMode(AbstractMessageListenerContainer.AckMode.MANUAL_IMMEDIATE); factory.getContainerProperties().setPollTimeout( 30000 ); return factory; } } |
配置文件 也可以把手动提交配置 写成这样
ack-mode: MANUAL_IMMEDIATE
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | spring: kafka: bootstrap-servers: 192.168 . 1.125 : 9092 192.168 . 1.126 : 9092 192.168 . 1.127 : 9092 producer: # 重试次数 retries: 3 # 批量发送的消息数量 batch-size: 16384 # 32MB的批处理缓冲区 buffer-memory: 33554432 key-serializer: org.apache.kafka.common.serialization.StringSerializer value-serializer: org.apache.kafka.common.serialization.StringSerializer consumer: # 默认消费者组 group-id: 0 # 最早未被消费的offset auto-offset-reset: earliest # 批量一次最大拉取数据量 max-poll-records: 3000 # 自动提交时间间隔, 这种直接拉到数据就提交 容易丢数据 auto-commit-interval: 2000 # 禁止自动提交 enable-auto-commit: false # 批量拉取间隔,要大于批量拉取数据的处理时间,时间间隔太小会有重复消费 max.poll.interval.ms: 5000 topicName: topic2: topic_collect1 topic5: topic_collect111 |
消费的方法如下, 方法比较简单
1 2 3 4 5 6 7 8 9 10 | @KafkaListener (id = "0" , topics = "topic_collect" , containerFactory = "batchFactory" ) public void listen100(List<ConsumerRecord<String, String>> records, Acknowledgment ack) { System.out.println(records.size() + "条数被消费" ); try { batchConsumer(records); ack.acknowledge(); } catch (Exception ex) { logger.error( "消费数据出错 " , ex.getStackTrace()); } } |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧