win平台运行smallpt

smallpt: Global Illumination in 99 lines of C++

首先在win平台需要添加函数erand48,修改为main函数,其中的samps是每个像素的采样率,越大越慢

修改后
#include <math.h>   // smallpt, a Path Tracer by Kevin Beason, 2008
#include <stdlib.h> // Make : g++ -O3 -fopenmp smallpt4k.cpp -o smallpt4k
#include <stdio.h>  //        Remove "-fopenmp" for g++ version < 4.2
struct Vec {        // Usage: time ./smallpt4k && xv image.ppm
  double x, y, z;                  // position, also color (r,g,b)
  Vec(double x_=0, double y_=0, double z_=0){ x=x_; y=y_; z=z_; }
  Vec operator+(const Vec &b) const { return Vec(x+b.x,y+b.y,z+b.z); }
  Vec operator-(const Vec &b) const { return Vec(x-b.x,y-b.y,z-b.z); }
  Vec operator*(double b) const { return Vec(x*b,y*b,z*b); }
  Vec mult(const Vec &b) const { return Vec(x*b.x,y*b.y,z*b.z); }
  Vec& norm(){ return *this = *this * (1/sqrt(x*x+y*y+z*z)); }
  double dot(const Vec &b) const { return x*b.x+y*b.y+z*b.z; } // cross:
  Vec operator%(Vec&b){return Vec(y*b.z-z*b.y,z*b.x-x*b.z,x*b.y-y*b.x);}
};
struct Ray { Vec o, d; Ray(Vec o_, Vec d_) : o(o_), d(d_) {} };
enum Refl_t { DIFF, SPEC, REFR };  // material types, used in radiance()
struct Sphere {
  double rad;       // radius
  Vec p, e, c;      // position, emission, color
  Refl_t refl;      // reflection type (DIFFuse, SPECular, REFRactive)
  Sphere(){}
  Sphere(double rad_, Vec p_, Vec e_, Vec c_, Refl_t refl_):
    rad(rad_), p(p_), e(e_), c(c_), refl(refl_) {}
  double intersect(const Ray &r) const { // returns distance, 0 if nohit
    Vec op = p-r.o; // Solve t^2*d.d + 2*t*(o-p).d + (o-p).(o-p)-R^2 = 0
    double t, eps=1e-4, b=op.dot(r.d), det=b*b-op.dot(op)+rad*rad;
    if (det<0) return 0; else det=sqrt(det);
    return (t=b-det)>eps ? t : ((t=b+det)>eps ? t : 0);
  }
};
Sphere spheres[9]; //Scene: radius, position, emission, color, material
inline double clamp(double x){ return x<0 ? 0 : x>1 ? 1 : x; }
inline int toInt(double x){ return int(pow(clamp(x),1/2.2)*255+.5); }
inline bool intersect(const Ray &r, double &t, int &id){
  double n=sizeof(spheres)/sizeof(Sphere), d, inf=t=1e20;
  for(int i=int(n);i--;) if((d=spheres[i].intersect(r))&&d<t){t=d;id=i;}
  return t<inf;
}
inline double erand48(unsigned short xsubi[3]) {
    return (double)rand() / (double)RAND_MAX;
}
Vec radiance(const Ray &r, int depth, unsigned short *Xi){
  double t;                               // distance to intersection
  int id=0;                               // id of intersected object
  if (!intersect(r, t, id)) return Vec(); // if miss, return black
  const Sphere &obj = spheres[id];        // the hit object
  Vec x=r.o+r.d*t, n=(x-obj.p).norm(), nl=n.dot(r.d)<0?n:n*-1, f=obj.c;
  double p = f.x>f.y && f.x>f.z ? f.x : f.y>f.z ? f.y : f.z; // max refl
  if (++depth>5) if (erand48(Xi)<p) f=f*(1/p); else return obj.e; //R.R.
  if (obj.refl == DIFF){                  // Ideal DIFFUSE reflection
    double r1=2*M_PI*erand48(Xi), r2=erand48(Xi), r2s=sqrt(r2);
    Vec w=nl, u=((fabs(w.x)>.1?Vec(0,1):Vec(1))%w).norm(), v=w%u;
    Vec d = (u*cos(r1)*r2s + v*sin(r1)*r2s + w*sqrt(1-r2)).norm();
    return obj.e + f.mult(radiance(Ray(x,d),depth,Xi));
  } else if (obj.refl == SPEC)            // Ideal SPECULAR reflection
    return obj.e + f.mult(radiance(Ray(x,r.d-n*2*n.dot(r.d)),depth,Xi));
  Ray reflRay(x, r.d-n*2*n.dot(r.d));     // Ideal dielectric REFRACTION
  bool into = n.dot(nl)>0;                // Ray from outside going in?
  double nc=1, nt=1.5, nnt=into?nc/nt:nt/nc, ddn=r.d.dot(nl), cos2t;
  if ((cos2t=1-nnt*nnt*(1-ddn*ddn))<0)    // Total internal reflection
    return obj.e + f.mult(radiance(reflRay,depth,Xi));
  Vec tdir = (r.d*nnt - n*((into?1:-1)*(ddn*nnt+sqrt(cos2t)))).norm();
  double a=nt-nc, b=nt+nc, R0=a*a/(b*b), c = 1-(into?-ddn:tdir.dot(n));
  double Re=R0+(1-R0)*c*c*c*c*c,Tr=1-Re,P=.25+.5*Re,RP=Re/P,TP=Tr/(1-P);
  return obj.e + f.mult(depth>2 ? (erand48(Xi)<P ?   // Russian roulette
    radiance(reflRay,depth,Xi)*RP:radiance(Ray(x,tdir),depth,Xi)*TP) :
    radiance(reflRay,depth,Xi)*Re+radiance(Ray(x,tdir),depth,Xi)*Tr);
}
int main() {
spheres[0]=Sphere(1e5, Vec( 1e5+1,40.8,81.6), Vec(),Vec(.75,.25,.25),DIFF);//Left
spheres[1]=Sphere(1e5, Vec(-1e5+99,40.8,81.6),Vec(),Vec(.25,.25,.75),DIFF);//Rght
spheres[2]=Sphere(1e5, Vec(50,40.8, 1e5),     Vec(),Vec(.75,.75,.75),DIFF);//Back
spheres[3]=Sphere(1e5, Vec(50,40.8,-1e5+170), Vec(),Vec(),           DIFF);//Frnt
spheres[4]=Sphere(1e5, Vec(50, 1e5, 81.6),    Vec(),Vec(.75,.75,.75),DIFF);//Botm
spheres[5]=Sphere(1e5, Vec(50,-1e5+81.6,81.6),Vec(),Vec(.75,.75,.75),DIFF);//Top
spheres[6]=Sphere(16.5,Vec(27,16.5,47),       Vec(),Vec(1,1,1)*.999, SPEC);//Mirr
spheres[7]=Sphere(16.5,Vec(73,16.5,78),       Vec(),Vec(1,1,1)*.999, REFR);//Glas
spheres[8]=Sphere(600, Vec(50,681.6-.27,81.6),Vec(12,12,12),  Vec(), DIFF);//Lite
  int w=1024, h=768, samps = 5000/4; // # samples
  Ray cam(Vec(50,52,295.6), Vec(0,-0.042612,-1).norm()); // cam pos, dir
  Vec cx=Vec(w*.5135/h), cy=(cx%cam.d).norm()*.5135, r,
    *c=(Vec*)malloc(sizeof(Vec)*w*h);
#pragma omp parallel for schedule(dynamic, 1) private(r)       // OpenMP
  for (int y=0; y<h; y++){                       // Loop over image rows
    fprintf(stderr,"\rRendering (%d spp) %5.2f%%",samps*4,100.*y/(h-1));
    for (unsigned short x=0, Xi[3]={0,0,y*y*y}; x<w; x++)   // Loop cols
      for (int sy=0, i=(h-y-1)*w+x; sy<2; sy++)     // 2x2 subpixel rows
        for (int sx=0; sx<2; sx++, r=Vec()){        // 2x2 subpixel cols
          for (int s=0; s<samps; s++){
            double r1=2*erand48(Xi), dx=r1<1 ? sqrt(r1)-1: 1-sqrt(2-r1);
            double r2=2*erand48(Xi), dy=r2<1 ? sqrt(r2)-1: 1-sqrt(2-r2);
            Vec d = cx*( ( (sx+.5 + dx)/2 + x)/w - .5) +
                    cy*( ( (sy+.5 + dy)/2 + y)/h - .5) + cam.d;
            r = r + radiance(Ray(cam.o+d*140,d.norm()),0,Xi)*(1./samps);
          } // Camera rays are pushed ^^^^^ forward to start in interior
          c[i] = c[i] + Vec(clamp(r.x),clamp(r.y),clamp(r.z))*.25;
        }
  }
  FILE *f = fopen("image.ppm", "w");         // Write image to PPM file.
  fprintf(f, "P3\n%d %d\n%d\n", w, h, 255);
  for (int i=0; i<w*h; i++)
    fprintf(f,"%d %d %d ", toInt(c[i].x), toInt(c[i].y), toInt(c[i].z));
  fclose(f);
  exit(0);
}

然后需要安装MSYS2

安装完成后将

C:\msys64\mingw64\bin

添加入环境变量

然后打开MSYS2 MINGW64,在里面创建文件,把代码复制进去

g++ -O3 -fopenmp smallpt.cpp -o smallpt 

编译,

它的home目录一般在

C:\msys64\home

运行编译后的结果

会生成ppm文件PPM Format Specification

可以用GIMP - Downloads打开

posted @ 2024-12-31 17:43  qbning  阅读(3)  评论(0编辑  收藏  举报
描述