TensorFlow 制作自己数据集时,xml转csv

TensorFlow 制作自己数据集时,xml转csv千篇一律,把我拐入坑里了。

如果训练自己的数据集只有一个类别,用网络上的xml_to_csv,完全没有问题,源码如下:

# -*- coding: utf-8 -*-
import os
import glob
import pandas as pd
import xml.etree.ElementTree as ET
 
def xml_to_csv(path):
    xml_list = []
    # 读取注释文件
    for xml_file in glob.glob(path + '/*.xml'):
        tree = ET.parse(xml_file)
        root = tree.getroot()
        for member in root.findall('object'):
            value = (root.find('filename').text + '.jpg',
                     int(root.find('size')[0].text),
                     int(root.find('size')[1].text),
                     member[0].text,
                     int(member[4][0].text),
                     int(member[4][1].text),
                     int(member[4][2].text),
                     int(member[4][3].text)
                     )
            xml_list.append(value)
    column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax']
 
    # 将所有数据分为样本集和验证集,一般按照3:1的比例
    train_list = xml_list[0: int(len(xml_list) * 0.67)]
    eval_list = xml_list[int(len(xml_list) * 0.67) + 1: ]
 
    # 保存为CSV格式
    train_df = pd.DataFrame(train_list, columns=column_name)
    eval_df = pd.DataFrame(eval_list, columns=column_name)
    train_df.to_csv('data/train.csv', index=None)
    eval_df.to_csv('data/eval.csv', index=None)
 
 
def main():
    path = './xml'
    xml_to_csv(path)
    print('Successfully converted xml to csv.')
 
main()

  

如果你的类别数据集,超过2类以上,再用上述源码,觉得把所有的数据集3:1的分割,而非一个类别的3:1分割 。

对上述源码略作调整,完美把每一类数据集按照9:1分割为训练数据集和测试数据集,源代码如下:

# coding: utf-8
import glob
import pandas as pd
import xml.etree.ElementTree as ET
 
classes = ["20Km_h", "no_passing_35", "no_passing", "keep_left", "keep_right", "mandatory", "straight_or_left", "passing_limits",
           "bicycles", "pedestrians", "stop", "dangerous"]
 
def xml_to_csv(path):
    train_list = []
    eval_list = []
 
    for cls in classes:
        xml_list = []
        # 读取注释文件
        for xml_file in glob.glob(path + '/*.xml'):
            tree = ET.parse(xml_file)
            root = tree.getroot()
            for member in root.findall('object'):
                if cls == member[0].text:
                    value = (root.find('filename').text,
                             int(root.find('size')[0].text),
                             int(root.find('size')[1].text),
                             member[0].text,
                             int(member[4][0].text),
                             int(member[4][1].text),
                             int(member[4][2].text),
                             int(member[4][3].text)
                             )
                    xml_list.append(value)
 
        for i in range(0,int(len(xml_list) * 0.9)):
            train_list.append(xml_list[i])
        for j in range(int(len(xml_list) * 0.9) + 1,int(len(xml_list))):
            eval_list.append(xml_list[j])
 
    column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax']
 
 
    # 保存为CSV格式
    train_df = pd.DataFrame(train_list, columns=column_name)
    eval_df = pd.DataFrame(eval_list, columns=column_name)
    train_df.to_csv('data/train.csv', index=None)
    eval_df.to_csv('data/eval.csv', index=None)
 
 
def main():
    # path = 'E:\\\data\\\Images'
    path = r'D:\work\PycharmPro\trafficsign\SSD_NET\data\xml_data'  # path参数更具自己xml文件所在的文件夹路径修改
    xml_to_csv(path)
    print('Successfully converted xml to csv.')
 
 
main()

  

classes = ["20Km_h", "no_passing_35", "no_passing", "keep_left", "keep_right", "mandatory", "straight_or_left", "passing_limits", "bicycles", "pedestrians", "stop", "dangerous"]

该处需要改为自己数据集类别标签名。


原文:https://blog.csdn.net/miao0967020148/article/details/90208139

posted @ 2019-06-14 17:36  持剑走天涯  阅读(1627)  评论(0编辑  收藏  举报
指纹锁安装 淋浴房安装 晾衣架安装 窗帘安装 灯具安装 卫浴安装 智能锁安装 家具安装