NetworkX 使用(三)

%pylab inline
import networkx as nx
Populating the interactive namespace from numpy and matplotlib
G = nx.Graph()
G.add_node(1)
G.add_nodes_from([2,3])
G.add_edge(1,2)
e = (2,3)
G.add_edge(*e)  # Unpacking tuple
G.add_edges_from([(1,2),(1,3)])
nx.draw(G)

output_3_0.png-10.8kB

print(G.number_of_nodes())
print(G.number_of_edges())
3
3
G[1]
AtlasView({2: {}, 3: {}})
G[1][2]['weight'] = 10
G[1]
AtlasView({2: {'weight': 10}, 3: {}})
FG = nx.Graph()
FG.add_weighted_edges_from([(1,2,0.125),(1,3,0.75),(2,4,1.2),(3,4,0.375)])
for n,nbrs in FG.adjacency():
    for nbr,eattr in nbrs.items():
        data=eattr['weight']
        if data<0.5: print('(%d, %d, %.3f)' % (n,nbr,data))
(1, 2, 0.125)
(2, 1, 0.125)
(3, 4, 0.375)
(4, 3, 0.375)
print(list(FG.adjacency()))
type(FG.adjacency())
[(1, {2: {'weight': 0.125}, 3: {'weight': 0.75}}), (2, {1: {'weight': 0.125}, 4: {'weight': 1.2}}), (3, {1: {'weight': 0.75}, 4: {'weight': 0.375}}), (4, {2: {'weight': 1.2}, 3: {'weight': 0.375}})]





dict_itemiterator
# Convenient access to all edges is achieved with the edges method.
for (u,v,d) in FG.edges(data='weight'):
     if d<0.5: print('(%d, %d, %.3f)'%(n,nbr,d))
(4, 3, 0.125)
(4, 3, 0.375)

添加 graphs, nodes, 和 edges 的属性

属性 (Attributes) 有 weights, labels, colors, 或者你喜欢的如何 Python 对象均可添加到 graphs, nodes, 或者 edges 中.

Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys must be hashable). By default these are empty, but attributes can be added or changed using add_edge, add_node or direct manipulation of the attribute dictionaries named G.graph, G.node and G.edge for a graph G.

Graph 属性

在创建新图的时候分配图属性.

G = nx.Graph(day="Friday")
G.graph
{'day': 'Friday'}

或者,你可以在之后修改:

G.graph['day']='Monday'
G.graph
{'day': 'Monday'}

Node 属性

使用 add_node(), add_nodes_from() 或者 G.node 添加节点属性.

G.add_node(1, time = '5pm')
G.node[1]
{'time': '5pm'}
G.add_nodes_from([3], time='2pm')
G.node[3]
{'time': '2pm'}
G.node[1]['room'] = 714
G.node[1]
{'time': '5pm', 'room': 714}
G.nodes(data=True)
NodeDataView({1: {'time': '5pm', 'room': 714}, 3: {'time': '2pm'}})

Note that adding a node to G.node does not add it to the graph, use G.add_node() to add new nodes.

Edge 属性

使用 add_edge(), add_edges_from(), subscript notation(下标注释), 或者 G.edge 添加边属性.

G.add_edge(1, 2, weight=4.7 )
G[1][2]
{'weight': 4.7}
G.add_edges_from([(3,4),(4,5)], color='red')
G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})])
G[1][2]['weight'] = 4.7
G.edges(data=True)
EdgeDataView([(1, 2, {'weight': 4.7, 'color': 'blue'}), (3, 4, {'color': 'red'}), (3, 2, {'weight': 8}), (4, 5, {'color': 'red'})])

转换图为邻接矩阵

你可以使用 nx.to_numpy_matrix(G)G 转换为 numpy 矩阵. 如果是加权图,则矩阵的元素是权重值. 如果边不存在,其值则设置为 \(0\) 而不是 Infinity(无穷大). You have to manually modify those values to Infinity (float('inf'))

nx.to_numpy_matrix(G)
matrix([[0. , 0. , 4.7, 0. , 0. ],
        [0. , 0. , 8. , 1. , 0. ],
        [4.7, 8. , 0. , 0. , 0. ],
        [0. , 1. , 0. , 0. , 1. ],
        [0. , 0. , 0. , 1. , 0. ]])
nx.to_numpy_matrix(FG)
matrix([[0.   , 0.125, 0.75 , 0.   ],
        [0.125, 0.   , 0.   , 1.2  ],
        [0.75 , 0.   , 0.   , 0.375],
        [0.   , 1.2  , 0.375, 0.   ]])

有向图

DiGraph 类提供了许多有向图中的额外算法,比如 DiGraph.out_edges(), DiGraph.in_degree(), DiGraph.predecessors(), DiGraph.successors()等。为了让算法可以在两类图中都可以工作,无向图中的 neighbors()degree() 分别等价于有向图中的 successors()和有向图中的 in_degree()out_degree() 的和.

DG = nx.DiGraph()
DG.add_weighted_edges_from([(1, 2, 0.5), (1, 3, 1.1), (4, 1, 2.3)])
DG.out_degree(1)  # 节点 1 的出度
2
DG.out_degree(1, weight='weight')  # 节点 1 的所有出度的权值之和
1.6
list(DG.successors(1)) # 节点 1 的继承者
[2, 3]
list(DG.neighbors(1)) # 节点 1 的邻居(不包括指向节点 1 的节点)
[2, 3]

有向图与无向图的转换

H = DG.to_undirected()
# 或者
H = nx.Graph(DG)

多图(Multigraphs)

NetworkX 提供了一个类,它可以允许任何一对节点之间有多条边。类 MultiGraph 和类 MultiDiGraph 允许添加相同的边两次,这两条边可能附带不同的权值。对于有些应用程序这是非常有用的类,但是许多算法不能够很好的在这样的图中定义,比如最短路径算法,但是像 MultiGraph.degree 这种算法又可以很好的被定义。否则你应该为了很好的定义测量,而将图转化为标准的图。

MG = nx.MultiGraph()
MG.add_weighted_edges_from([(1, 2, 0.5), (1, 2, 0.75), (2, 3, 0.5)])
dict(MG.degree(weight='weight'))

GG = nx.Graph()
for n, nbrs in MG.adjacency():
    for nbr, edict in nbrs.items():
        minvalue = min([d['weight'] for d in edict.values()])
        GG.add_edge(n, nbr, weight=minvalue)

nx.shortest_path(GG, 1, 3)
[1, 2, 3]

图的生成器和图的操作

除了通过节点和边生成图,也可以通过以下方法产生:

使用典型的图形操作:

  • subgraph(G, nbunch) - 产生 nbunch 节点的子图
  • union(G1,G2) - 结合图
  • disjoint_union(G1,G2) - 假设所有节点都不同,然后结合图
  • cartesian_product(G1,G2) - 返回笛卡尔乘积图
  • compose(G1,G2) - 结合两个图并表示两者共同的节点
  • complement(G) - 图 G 的补图
  • create_empty_copy(G) - 返回同一类图的无边副本
  • convert_to_undirected(G) - 返回 G 的无向图
  • convert_to_directed(G) - 返回G的有向图

调用经典的小图

petersen = nx.petersen_graph()

tutte = nx.tutte_graph()

maze = nx.sedgewick_maze_graph()

tet = nx.tetrahedral_graph()

使用一些图形生成器

K_5 = nx.complete_graph(5)

K_3_5 = nx.complete_bipartite_graph(3, 5)

barbell = nx.barbell_graph(10, 10)

lollipop = nx.lollipop_graph(10, 20)

使用随机图发生器

er = nx.erdos_renyi_graph(100, 0.15)

ws = nx.watts_strogatz_graph(30, 3, 0.1)

ba = nx.barabasi_albert_graph(100, 5)

red = nx.random_lobster(100, 0.9, 0.9)

通过读取存储在文件中的一些标准图形格式,例如边表,邻接表,GML,GraphML,pickle,LEAD或者其他的一些格式:

nx.write_gml(red,"path.to.file")

mygraph=nx.read_gml("path.to.file")

分析图

图 G 的结构可以通过各种图论的函数来分析,例如:

G = nx.Graph()
G.add_edges_from([(1, 2), (1, 3)])
G.add_node("spam")       # adds node "spam"
list(nx.connected_components(G))
[{1, 2, 3}, {'spam'}]
sorted(d for n, d in G.degree())
[0, 1, 1, 2]
nx.clustering(G)
{1: 0, 2: 0, 3: 0, 'spam': 0}

返回节点属性的函数是通过返回一个以节点为键的字典来实现的:

nx.degree(G)
DegreeView({1: 2, 2: 1, 3: 1, 'spam': 0})

图算法:Algorithms

posted @ 2018-08-06 15:56  xinet  阅读(2341)  评论(0编辑  收藏  举报