通过迭代器获取数据

%pylab inline
from keras.datasets import mnist
import mxnet as mx
from mxnet import nd
from mxnet import autograd 
import random
from mxnet import gluon

(x_train, y_train), (x_test, y_test) = mnist.load_data()
num_examples = x_train.shape[0]
num_inputs = x_train.shape[1] * x_train.shape[2]
batch_size = 64

1. 自定义数据迭代器

def data_iter1(X, Y, batch_size):
    num_samples = X.shape[0]
    idx = list(range(num_samples))
    random.shuffle(idx)
    
    X = nd.array(X)
    Y = nd.array(Y)
    for i in range(0, num_examples, batch_size):
        j = nd.array(idx[i: min(i + batch_size, num_examples)])
        yield nd.take(X, j), nd.take(Y, j)

2. Gluon 迭代器

dataset = gluon.data.ArrayDataset(x_train, y_train)
data_iter = gluon.data.DataLoader(dataset, batch_size, shuffle=True)

3. 从迭代器中获取数据

for data, label in data_iter:
    print(data.shape, label.shape)
    break
(64, 28, 28) (64,)
for data, label in data_iter1(x_train, y_train, batch_size):
    print(data.shape, label.shape)
    break
(64, 28, 28) (64,)

更多精彩见:使用 迭代器 获取 Cifar 等常用数据集

posted @ 2018-01-27 20:36  xinet  阅读(2400)  评论(0编辑  收藏  举报