AQS ,模板方法
参考https://www.javadoop.com/post/AbstractQueuedSynchronizer
提到的 ReentrantLock,Semaphore,其他的诸如 ReentrantReadWriteLock,SynchronousQueue,FutureTask 等等皆是基于 AQS 的
1、重要属性 头结点 + 尾节点 + state + 当前持有独占锁的线程
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | // 头结点,你直接把它当做 当前持有锁的线程 可能是最好理解的 private transient volatile Node head; // 阻塞的尾节点,每个新的节点进来,都插入到最后,也就形成了一个链表 private transient volatile Node tail; // 这个是最重要的,代表当前锁的状态,0代表没有被占用,大于 0 代表有线程持有当前锁 // 这个值可以大于 1,是因为锁可以重入,每次重入都加上 1 private volatile int state; // 代表当前持有独占锁的线程,举个最重要的使用例子,因为锁可以重入 // reentrantLock.lock()可以嵌套调用多次,所以每次用这个来判断当前线程是否已经拥有了锁 // if (currentThread == getExclusiveOwnerThread()) {state++} private transient Thread exclusiveOwnerThread; //继承自AbstractOwnableSynchronizer |
2、实际的阻塞队列,是不包含头结点的
3、结点Node的属性
共享or独占
状态,记录的是下一个节点的状态 CANCELLED =1 线程取消 SIGNAL=-1 表示下一个节点需要被唤醒 CONDITION表示是条件队列节点用在Condition类中
前结点+后结点指针
线程本身
注:状态waitStatus,初始值为0。头结点初始为0,当有一个排队时,把头结点waitStatus改为-1.“waitStatus代表后继节点的状态”
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | static final class Node { // 标识节点当前在共享模式下 static final Node SHARED = new Node(); // 标识节点当前在独占模式下 static final Node EXCLUSIVE = null ; // ======== 下面的几个int常量是给waitStatus用的 =========== /** waitStatus value to indicate thread has cancelled */ // 代码此线程取消了争抢这个锁 static final int CANCELLED = 1; /** waitStatus value to indicate successor's thread needs unparking */ // 官方的描述是,其表示当前node的后继节点对应的线程需要被唤醒 static final int SIGNAL = -1; /** waitStatus value to indicate thread is waiting on condition */ // 本文不分析condition,所以略过吧,下一篇文章会介绍这个 static final int CONDITION = -2; /** * waitStatus value to indicate the next acquireShared should * unconditionally propagate */ // 同样的不分析,略过吧 static final int PROPAGATE = -3; // ===================================================== // 取值为上面的1、-1、-2、-3,或者0(以后会讲到) // 这么理解,暂时只需要知道如果这个值 大于0 代表此线程取消了等待, // ps: 半天抢不到锁,不抢了,ReentrantLock是可以指定timeouot的。。。 volatile int waitStatus; // 前驱节点的引用 volatile Node prev; // 后继节点的引用 volatile Node next; // 这个就是线程本尊 volatile Thread thread; } |
4、抢锁
总结:公平锁和非公平锁只有两处不同:
- 非公平锁在调用 lock 后,首先就会调用 CAS 进行一次抢锁,如果这个时候恰巧锁没有被占用,那么直接就获取到锁返回了。
- 非公平锁在 CAS 失败后,和公平锁一样都会进入到 tryAcquire 方法,在 tryAcquire 方法中,如果发现锁这个时候被释放了(state == 0),非公平锁会直接 CAS 抢锁,但是公平锁会判断等待队列是否有线程处于等待状态,如果有则不去抢锁,乖乖排到后面。
公平锁和非公平锁就这两点区别,如果这两次 CAS 都不成功,那么后面非公平锁和公平锁是一样的,都要进入到阻塞队列等待唤醒。
相对来说,非公平锁会有更好的性能,因为它的吞吐量比较大。当然,非公平锁让获取锁的时间变得更加不确定,可能会导致在阻塞队列中的线程长期处于饥饿状态。
5、增加到阻塞队列中addWriter,成功添加后将线程设置为等待状态,lockSupport.park
a、当队列不为空且或者CAS成功,则把生成的节点,插到队尾,用CAS把自己设置成队尾节点
b、pred==null(队列是空的) 或者 CAS失败(有线程在竞争入队),进
enq(node),
c、进入自旋锁,如果头结点为空,则compareAndSetHead(new Node()),new出一个头结点,state = 0;不为空,则尝试CAS插入结点
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 | private Node addWaiter(Node mode) { Node node = new Node(Thread.currentThread(), mode); // Try the fast path of enq; backup to full enq on failure // 以下几行代码想把当前node加到链表的最后面去,也就是进到阻塞队列的最后 Node pred = tail; // tail!=null => 队列不为空(tail==head的时候,其实队列是空的,不过不管这个吧) if (pred != null ) { // 将当前的队尾节点,设置为自己的前驱 node.prev = pred; // 用CAS把自己设置为队尾, 如果成功后,tail == node 了,这个节点成为阻塞队列新的尾巴 if (compareAndSetTail(pred, node)) { // 进到这里说明设置成功,当前node==tail, 将自己与之前的队尾相连, // 上面已经有 node.prev = pred,加上下面这句,也就实现了和之前的尾节点双向连接了 pred.next = node; // 线程入队了,可以返回了 return node; } } // 仔细看看上面的代码,如果会到这里, // 说明 pred==null(队列是空的) 或者 CAS失败(有线程在竞争入队) // 读者一定要跟上思路,如果没有跟上,建议先不要往下读了,往回仔细看,否则会浪费时间的 enq(node); return node; } /** * Inserts node into queue, initializing if necessary. See picture above. * @param node the node to insert * @return node's predecessor */ // 采用自旋的方式入队 // 之前说过,到这个方法只有两种可能:等待队列为空,或者有线程竞争入队, // 自旋在这边的语义是:CAS设置tail过程中,竞争一次竞争不到,我就多次竞争,总会排到的 private Node enq(final Node node) { for (;;) { Node t = tail; // 之前说过,队列为空也会进来这里 if (t == null ) { // Must initialize // 初始化head节点 // 细心的读者会知道原来 head 和 tail 初始化的时候都是 null 的 // 还是一步CAS,你懂的,现在可能是很多线程同时进来呢 if (compareAndSetHead( new Node())) // 给后面用:这个时候head节点的waitStatus==0, 看new Node()构造方法就知道了 // 这个时候有了head,但是tail还是null,设置一下, // 把tail指向head,放心,马上就有线程要来了,到时候tail就要被抢了 // 注意:这里只是设置了tail=head,这里可没return哦,没有return,没有return // 所以,设置完了以后,继续for循环,下次就到下面的else分支了 tail = head; } else { // 下面几行,和上一个方法 addWaiter 是一样的, // 只是这个套在无限循环里,反正就是将当前线程排到队尾,有线程竞争的话排不上重复排 node.prev = t; if (compareAndSetTail(t, node)) { t.next = node; return t; } } } } |
6、解锁,release,只是把state-1了,减到0说明完全释放了锁
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | public final boolean release( int arg) { // 往后看吧 if (tryRelease(arg)) { Node h = head; if (h != null && h.waitStatus != 0) unparkSuccessor(h); return true ; } return false ; } // 回到ReentrantLock看tryRelease方法 protected final boolean tryRelease( int releases) { int c = getState() - releases; if (Thread.currentThread() != getExclusiveOwnerThread()) throw new IllegalMonitorStateException(); // 是否完全释放锁 boolean free = false ; // 其实就是重入的问题,如果c==0,也就是说没有嵌套锁了,可以释放了,否则还不能释放掉 if (c == 0) { free = true ; setExclusiveOwnerThread( null ); } setState(c); return free; } |
7、唤醒后继节点,需要进去判断state,如果是1取消则跳过
1 | LockSupport.unpark() 唤醒 |
1 | LockSupport.park() 阻塞 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | private void unparkSuccessor(Node node) { /* * If status is negative (i.e., possibly needing signal) try * to clear in anticipation of signalling. It is OK if this * fails or if status is changed by waiting thread. */ int ws = node.waitStatus; // 如果head节点当前waitStatus<0, 将其修改为0 if (ws < 0) compareAndSetWaitStatus(node, ws, 0); /* * Thread to unpark is held in successor, which is normally * just the next node. But if cancelled or apparently null, * traverse backwards from tail to find the actual * non-cancelled successor. */ // 下面的代码就是唤醒后继节点,但是有可能后继节点取消了等待(waitStatus==1) // 从队尾往前找,找到waitStatus<=0的所有节点中排在最前面的 Node s = node.next; if (s == null || s.waitStatus > 0) { s = null ; // 从后往前找,仔细看代码,不必担心中间有节点取消(waitStatus==1)的情况 for (Node t = tail; t != null && t != node; t = t.prev) if (t.waitStatus <= 0) s = t; } if (s != null ) // 唤醒线程 LockSupport.unpark(s.thread); } |
以 ReentrantLock 为例,state 初始化为 0,表示未锁定状态。A 线程 lock()时,会调用 tryAcquire()独占该锁并将 state+1。此后,其他线程再 tryAcquire()时就会失败,直到 A 线程 unlock()到 state=0(即释放锁)为止,其它线程才有机会获取该锁。当然,释放锁之前,A 线程自己是可以重复获取此锁的(state 会累加),这就是可重入的概念。但要注意,获取多少次就要释放多么次,这样才能保证 state 是能回到零态的。
再以 CountDownLatch 以例,任务分为 N 个子线程去执行,state 也初始化为 N(注意 N 要与线程个数一致)。这 N 个子线程是并行执行的,每个子线程执行完后 countDown()一次,state 会 CAS(Compare and Swap)减 1。等到所有子线程都执行完后(即 state=0),会 unpark()主调用线程,然后主调用线程就会从 await()函数返回,继续后余动作。
AQS 使用了模板方法模式,自定义同步器时需要重写下面几个 AQS 提供的模板方法:
isHeldExclusively()//该线程是否正在独占资源。只有用到condition才需要去实现它。 tryAcquire(int)//独占方式。尝试获取资源,成功则返回true,失败则返回false。 tryRelease(int)//独占方式。尝试释放资源,成功则返回true,失败则返回false。 tryAcquireShared(int)//共享方式。尝试获取资源。负数表示失败;0表示成功,但没有剩余可用资源;正数表示成功,且有剩余资源。 tryReleaseShared(int)//共享方式。尝试释放资源,成功则返回true,失败则返回false。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 单元测试从入门到精通
· winform 绘制太阳,地球,月球 运作规律
· 上周热点回顾(3.3-3.9)