1.选一个自己感兴趣的主题(所有人不能雷同)。
因为不能雷同,所以就找了没人做的,找了一个小说网站。
2.用python 编写爬虫程序,从网络上爬取相关主题的数据。
导入相关类
import requests from bs4 import BeautifulSoup import jieba
获取详细页面的标题和介绍
def getNewDetail(novelUrl): #获取详细页面方法 novelDetail = {} res = requests.get(novelUrl) res.encoding = 'utf-8' soup = BeautifulSoup(res.text, 'html.parser') novelDetail['title'] = soup.select(".title")[0].select("a")[0].text #小说名 novelDetail['intro'] = soup.select(".info")[0].text #小说介绍 num = soup.select(".num")[0].text #小说数量统计 novelDetail['hit'] = num[num.find('总点击:'):num.find('总人气:')].lstrip('总点击:') #总点击次数 # print(novelDetail['title']) return novelDetail
获取一个页面的所有列表
def getListPage(pageUrl): #获取一个页面的所有小说列表 novelList = [] res = requests.get(pageUrl) res.encoding = 'utf-8' soup = BeautifulSoup(res.text, 'html.parser') for novel in soup.select('.book'): # if len(novel.select('.news-list-title')) > 0: novelUrl = novel.select('a')[0].attrs['href'] # URL novelList.append(getNewDetail(novelUrl)) return novelList
计算网站的小说总数
def getPageN(url): #计算网站的小说总数 res = requests.get(url) res.encoding = 'utf-8' soup = BeautifulSoup(res.text, 'html.parser') num = soup.select(".red2")[2].text n = int(num[num.find('云起书库'):num.find('本')].lstrip('云起书库'))//30+1 return n
获取所有数据并分别写入TXT,title.txt和intro.txt
网站的第一页通常都是分开的网址,所以要分开爬数据
url = 'http://yunqi.qq.com/bk/so2/n30p' novelTotal = [] novelTotal.extend(getListPage(url)) n = getPageN(url) for i in range(2, 3): pageUrl = 'http://yunqi.qq.com/bk/so2/n30p{}.html'.format(i) novelTotal.extend(getListPage(pageUrl)) writeFile("title.txt",novelTotal,"title") writeFile("intro.txt",novelTotal,"intro")
3.对爬了的数据进行文本分析,生成词云。
file=open('intro.txt','r',encoding='utf-8') text=file.read() file.close() p = {",","。",":","“","”","?"," ",";","!",":","*","、",")","的","她","了","他","是","\n","我","你","不","人","也","】","…","啊","就","在","要","都","和","【","被","却","把","说","男","对","小","好","一个","着","有","吗","什么","上","又","还","自己","个","中","到","前","大"} # for i in p: # text = text.replace(i, " ") t = list(jieba.cut_for_search(text)) count = {} wl = (set(t) - p) # print(wl) for i in wl: count[i] = t.count(i) # print(count) cl = list(count.items()) cl.sort(key=lambda x: x[1], reverse=True) print(cl) f = open('wordCount.txt', 'a',encoding="utf-8") for i in range(20): f.write(cl[i][0] + '' + str(cl[i][1]) + '\n') f.close() from PIL import Image, ImageSequence import numpy as np import matplotlib.pyplot as plt from wordcloud import WordCloud, ImageColorGenerator font = r'C:\Windows\Fonts\simhei.TTF' # 引入字体 # 读取背景图片 image = Image.open('./labixiaoxin.jpg') i = np.array(image) wc = WordCloud(font_path=font, # 设置字体 background_color='White', mask=i, # 设置背景图片,背景是蜡笔小新 max_words=200) wc.generate_from_frequencies(count) image_color = ImageColorGenerator(i) # 绘制词云图 plt.imshow(wc) plt.axis("off") plt.show()
4.对文本分析结果进行解释说明。
由于是小说,所以当下小说见得多的都是一些仙侠或者言情小说,例如什么霸道总裁什么的,所以描述的都一般是男人女人的,由此也可见大家都小说的爱好偏向以及作者创作的类型,选对读者的兴趣的话就能更受欢迎
5.写一篇完整的博客,描述上述实现过程、遇到的问题及解决办法、数据分析思想及结论。
遇到的问题及解决方案
1.对网站的规律以及元素审阅的分析
一般是先有开发者工具审阅元素的class,有时候会有一些元素是不能直接获取的,这时候就需要用老师讲过的刷新查看网站发出的请求,通常一些元素是在script里显示的,
这时候就可以查看请求script得到网页不能直接获取的那些信息。
2.在导入wordcloud这个包的时候,会遇到很多问题
首先通过使用pip install wordcloud这个方法在全局进行包的下载,可是最后会报错误error: Microsoft Visual C++ 14.0 is required. Get it with “Microsoft Visual C++ Build Tools”: http://landinghub.visualstudio.com/visual-cpp-build-tools
这需要我们去下载VS2017中的工具包,但是网上说文件较大,所以放弃。
之后尝试去https://www.lfd.uci.edu/~gohlke/pythonlibs/#wordcloud下载whl文件,然后安装。
下载对应的python版本进行安装,如我的就下载wordcloud-1.4.1-cp36-cp36m-win32.whl,wordcloud-1.4.1-cp36-cp36m-win_amd64
两个文件都放到项目目录中,两种文件都尝试安装
通过cd到这个文件的目录中,通过pip install wordcloud-1.4.1-cp36-cp36m-win_amd64,进行导入
但是两个尝试后只有win32的能导入,64位的不支持,所以最后只能将下好的wordcloud放到项目lib中,在Pycharm中import wordcloud,最后成功
6.最后提交爬取的全部数据、爬虫及数据分析源代码。
以下是完整的代码
import requests from bs4 import BeautifulSoup import jieba def getNewDetail(novelUrl): #获取详细页面方法 novelDetail = {} res = requests.get(novelUrl) res.encoding = 'utf-8' soup = BeautifulSoup(res.text, 'html.parser') novelDetail['title'] = soup.select(".title")[0].select("a")[0].text #小说名 novelDetail['intro'] = soup.select(".info")[0].text #小说介绍 num = soup.select(".num")[0].text #小说数量统计 novelDetail['hit'] = num[num.find('总点击:'):num.find('总人气:')].lstrip('总点击:') #总点击次数 # print(novelDetail['title']) return novelDetail def getListPage(pageUrl): #获取一个页面的所有小说列表 novelList = [] res = requests.get(pageUrl) res.encoding = 'utf-8' soup = BeautifulSoup(res.text, 'html.parser') for novel in soup.select('.book'): # if len(novel.select('.news-list-title')) > 0: novelUrl = novel.select('a')[0].attrs['href'] # URL novelList.append(getNewDetail(novelUrl)) return novelList def getPageN(url): #计算网站的小说总数 res = requests.get(url) res.encoding = 'utf-8' soup = BeautifulSoup(res.text, 'html.parser') num = soup.select(".red2")[2].text n = int(num[num.find('云起书库'):num.find('本')].lstrip('云起书库'))//30+1 return n def writeFile(file,novelTotal,key): #将数据写入txt f = open(file, "a", encoding="utf-8") for i in novelTotal: f.write(str(i[key])+"\n") f.close() # newsUrl = '''http://yunqi.qq.com/bk/so2/n30p''' # getListPage(newsUrl) url = 'http://yunqi.qq.com/bk/so2/n30p' novelTotal = [] novelTotal.extend(getListPage(url)) n = getPageN(url) for i in range(2, 3): pageUrl = 'http://yunqi.qq.com/bk/so2/n30p{}.html'.format(i) novelTotal.extend(getListPage(pageUrl)) writeFile("title.txt",novelTotal,"title") writeFile("intro.txt",novelTotal,"intro") file=open('intro.txt','r',encoding='utf-8') text=file.read() file.close() p = {",","。",":","“","”","?"," ",";","!",":","*","、",")","的","她","了","他","是","\n","我","你","不","人","也","】","…","啊","就","在","要","都","和","【","被","却","把","说","男","对","小","好","一个","着","有","吗","什么","上","又","还","自己","个","中","到","前","大"} # for i in p: # text = text.replace(i, " ") t = list(jieba.cut_for_search(text)) count = {} wl = (set(t) - p) # print(wl) for i in wl: count[i] = t.count(i) # print(count) cl = list(count.items()) cl.sort(key=lambda x: x[1], reverse=True) print(cl) f = open('wordCount.txt', 'a',encoding="utf-8") for i in range(20): f.write(cl[i][0] + '' + str(cl[i][1]) + '\n') f.close() from PIL import Image, ImageSequence import numpy as np import matplotlib.pyplot as plt from wordcloud import WordCloud, ImageColorGenerator font = r'C:\Windows\Fonts\simhei.TTF' # 引入字体 # 读取背景图片 image = Image.open('./labixiaoxin.jpg') i = np.array(image) wc = WordCloud(font_path=font, # 设置字体 background_color='White', mask=i, # 设置背景图片,背景是树叶 max_words=200) wc.generate_from_frequencies(count) image_color = ImageColorGenerator(i) # 绘制词云图 plt.imshow(wc) plt.axis("off") plt.show()