MySQL数据库面试题(2022最新版)

MySQL数据库面试题(2022最新版)

数据库三大范式是什么

第一范式:每个列都不可以再拆分。
第二范式:在第一范式的基础上,非主键列完全依赖于主键,而不能是依赖于主键的一部分。
第三范式:在第二范式的基础上,非主键列只依赖于主键,不依赖于其他非主键。
在设计数据库结构的时候,要尽量遵守三范式,如果不遵守,必须有足够的理由。比如性能。事实上我们经常会为了性能而妥协数据库的设计。

mysql有关权限的表都有哪几个

MySQL服务器通过权限表来控制用户对数据库的访问,权限表存放在mysql数据库里,由mysql_install_db脚本初始化。这些权限表分别user,db,table_priv,columns_priv和host。下面分别介绍一下这些表的结构和内容:
user权限表:记录允许连接到服务器的用户帐号信息,里面的权限是全局级的。
db权限表:记录各个帐号在各个数据库上的操作权限。
table_priv权限表:记录数据表级的操作权限。
columns_priv权限表:记录数据列级的操作权限。
host权限表:配合db权限表对给定主机上数据库级操作权限作更细致的控制。这个权限表不受GRANT和REVOKE语句的影响。

MySQL的binlog有有几种录入格式?分别有什么区别?

有三种格式,statement,row和mixed。

statement模式下,每一条会修改数据的sql都会记录在binlog中。不需要记录每一行的变化,减少了binlog日志量,节约了IO,提高性能。由于sql的执行是有上下文的,因此在保存的时候需要保存相关的信息,同时还有一些使用了函数之类的语句无法被记录复制。
row级别下,不记录sql语句上下文相关信息,仅保存哪条记录被修改。记录单元为每一行的改动,基本是可以全部记下来但是由于很多操作,会导致大量行的改动(比如alter table),因此这种模式的文件保存的信息太多,日志量太大。
mixed,一种折中的方案,普通操作使用statement记录,当无法使用statement的时候使用row。
此外,新版的MySQL中对row级别也做了一些优化,当表结构发生变化的时候,会记录语句而不是逐行记录。

MyISAM索引与InnoDB索引的区别?

InnoDB索引是聚簇索引,MyISAM索引是非聚簇索引。
InnoDB的主键索引的叶子节点存储着行数据,因此主键索引非常高效。
MyISAM索引的叶子节点存储的是行数据地址,需要再寻址一次才能得到数据。
InnoDB非主键索引的叶子节点存储的是主键和其他带索引的列数据,因此查询时做到覆盖索引会非常高效。

什么是索引?

索引是一种特殊的文件(InnoDB数据表上的索引是表空间的一个组成部分),它们包含着对数据表里所有记录的引用指针。

索引是一种数据结构。数据库索引,是数据库管理系统中一个排序的数据结构,以协助快速查询、更新数据库表中数据。索引的实现通常使用B树及其变种B+树。

更通俗的说,索引就相当于目录。为了方便查找书中的内容,通过对内容建立索引形成目录。索引是一个文件,它是要占据物理空间的

索引有哪些优缺点?

索引的优点

可以大大加快数据的检索速度,这也是创建索引的最主要的原因。
通过使用索引,可以在查询的过程中,使用优化隐藏器,提高系统的性能。
索引的缺点

时间方面:创建索引和维护索引要耗费时间,具体地,当对表中的数据进行增加、删除和修改的时候,索引也要动态的维护,会降低增/改/删的执行效率;
空间方面:索引需要占物理空间。

索引使用场景

where 
根据id查询记录,因为id字段仅建立了主键索引,因此此SQL执行可选的索引只有主键索引,如果有多个,最终会选一个较优的作为检索的依据。
可以尝试在一个字段未建立索引时,根据该字段查询的效率,然后对该字段建立索引(alter table 表名 add index(字段名)),同样的SQL执行的效率,你会发现查询效率会有明显的提升(数据量越大越明显)。


order by

当我们使用order by将查询结果按照某个字段排序时,如果该字段没有建立索引,那么执行计划会将查询出的所有数据使用外部排序(将数据从硬盘分批读取到内存使用内部排序,最后合并排序结果),这个操作是很影响性能的,因为需要将查询涉及到的所有数据从磁盘中读到内存(如果单条数据过大或者数据量过多都会降低效率),更无论读到内存之后的排序了。

但是如果我们对该字段建立索引alter table 表名 add index(字段名),那么由于索引本身是有序的,因此直接按照索引的顺序和映射关系逐条取出数据即可。而且如果分页的,那么只用取出索引表某个范围内的索引对应的数据,而不用像上述那取出所有数据进行排序再返回某个范围内的数据。(从磁盘取数据是最影响性能的)

join
对join语句匹配关系(on)涉及的字段建立索引能够提高效率

索引覆盖

如果要查询的字段都建立过索引,那么引擎会直接在索引表中查询而不会访问原始数据(否则只要有一个字段没有建立索引就会做全表扫描),这叫索引覆盖。因此我们需要尽可能的在select后只写必要的查询字段,以增加索引覆盖的几率。

这里值得注意的是不要想着为每个字段建立索引,因为优先使用索引的优势就在于其体积小。

索引有哪几种类型?

主键索引: 数据列不允许重复,不允许为NULL,一个表只能有一个主键。

唯一索引: 数据列不允许重复,允许为NULL值,一个表允许多个列创建唯一索引。

可以通过 ALTER TABLE table_name ADD UNIQUE (column); 创建唯一索引

可以通过 ALTER TABLE table_name ADD UNIQUE (column1,column2); 创建唯一组合索引

普通索引: 基本的索引类型,没有唯一性的限制,允许为NULL值。

可以通过ALTER TABLE table_name ADD INDEX index_name (column);创建普通索引

可以通过ALTER TABLE table_name ADD INDEX index_name(column1, column2, column3);创建组合索引

全文索引: 是目前搜索引擎使用的一种关键技术。

可以通过ALTER TABLE table_name ADD FULLTEXT (column);创建全文索引

索引的数据结构(b树,hash)

索引的数据结构和具体存储引擎的实现有关,在MySQL中使用较多的索引有Hash索引,B+树索引等,而我们经常使用的InnoDB存储引擎的默认索引实现为:B+树索引。对于哈希索引来说,底层的数据结构就是哈希表,因此在绝大多数需求为单条记录查询的时候,可以选择哈希索引,查询性能最快;其余大部分场景,建议选择BTree索引。

1)B树索引

mysql通过存储引擎取数据,基本上90%的人用的就是InnoDB了,按照实现方式分,InnoDB的索引类型目前只有两种:BTREE(B树)索引和HASH索引。B树索引是Mysql数据库中使用最频繁的索引类型,基本所有存储引擎都支持BTree索引。通常我们说的索引不出意外指的就是(B树)索引(实际是用B+树实现的,因为在查看表索引时,mysql一律打印BTREE,所以简称为B树索引)
查询方式:

主键索引区:PI(关联保存的时数据的地址)按主键查询,

普通索引区:si(关联的id的地址,然后再到达上面的地址)。所以按主键查询,速度最快

B+tree性质:

1.)n棵子tree的节点包含n个关键字,不用来保存数据而是保存数据的索引。

2.)所有的叶子结点中包含了全部关键字的信息,及指向含这些关键字记录的指针,且叶子结点本身依关键字的大小自小而大顺序链接。

3.)所有的非终端结点可以看成是索引部分,结点中仅含其子树中的最大(或最小)关键字。

4.)B+ 树中,数据对象的插入和删除仅在叶节点上进行。

5.)B+树有2个头指针,一个是树的根节点,一个是最小关键码的叶节点。

2)哈希索引

简要说下,类似于数据结构中简单实现的HASH表(散列表)一样,当我们在mysql中用哈希索引时,主要就是通过Hash算法(常见的Hash算法有直接定址法、平方取中法、折叠法、除数取余法、随机数法),将数据库字段数据转换成定长的Hash值,与这条数据的行指针一并存入Hash表的对应位置;如果发生Hash碰撞(两个不同关键字的Hash值相同),则在对应Hash键下以链表形式存储。

索引的基本原理

索引用来快速地寻找那些具有特定值的记录。如果没有索引,一般来说执行查询时遍历整张表。
索引的原理很简单,就是把无序的数据变成有序的查询
把创建了索引的列的内容进行排序
对排序结果生成倒排表
在倒排表内容上拼上数据地址链
在查询的时候,先拿到倒排表内容,再取出数据地址链,从而拿到具体数据

索引设计的原则有哪些?

索引虽好,但也不是无限制的使用,最好符合一下几个原则

1) 最左前缀匹配原则,组合索引非常重要的原则,mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配,比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整。

2)较频繁作为查询条件的字段才去创建索引

3)更新频繁字段不适合创建索引

4)若是不能有效区分数据的列不适合做索引列(如性别,男女未知,最多也就三种,区分度实在太低)

5)尽量的扩展索引,不要新建索引。比如表中已经有a的索引,现在要加(a,b)的索引,那么只需要修改原来的索引即可。

6)定义有外键的数据列一定要建立索引。

7)对于那些查询中很少涉及的列,重复值比较多的列不要建立索引。

8)对于定义为text、image和bit的数据类型的列不要建立索引。
 
9.适合索引的列是出现在where子句中的列,或者连接子句中指定的列
10.基数较小的类,索引效果较差,没有必要在此列建立索引
11.使用短索引,如果对长字符串列进行索引,应该指定一个前缀长度,这样能够节省大量索引空间
12.不要过度索引。索引需要额外的磁盘空间,并降低写操作的性能。在修改表内容的时候,索引会进行更新甚至重构,索引列越多,这个时间就会越长。所以只保持需要的索引有利于查询即可。

13.非空字段:应该指定列为NOT NULL,除非你想存储NULL。在mysql中,含有空值的列很难进行查询优化,因为它们使得索引、索引的统计信息以及比较运算更加复杂。你应该用0、一个特殊的值或者一个空串代替空值;
14.取值离散大的字段:(变量各个取值之间的差异程度)的列放到联合索引的前面,可以通过count()函数查看字段的差异值,返回值越大说明字段的唯一值越多字段的离散程度高;
15.索引字段越小越好:数据库的数据存储以页为单位一页存储的数据越多一次IO操作获取的数据越大效率越高。

百万级别或以上的数据如何删除

关于索引:由于索引需要额外的维护成本,因为索引文件是单独存在的文件,所以当我们对数据的增加,修改,删除,都会产生额外的对索引文件的操作,这些操作需要消耗额外的IO,会降低增/改/删的执行效率。所以,在我们删除数据库百万级别数据的时候,查询MySQL官方手册得知删除数据的速度和创建的索引数量是成正比的。

所以我们想要删除百万数据的时候可以先删除索引(此时大概耗时三分多钟)
然后删除其中无用数据(此过程需要不到两分钟)
删除完成后重新创建索引(此时数据较少了)创建索引也非常快,约十分钟左右。
与之前的直接删除绝对是要快速很多,更别说万一删除中断,一切删除会回滚。那更是坑了。

什么是最左前缀原则?什么是最左匹配原则

顾名思义,就是最左优先,在创建多列索引时,要根据业务需求,where子句中使用最频繁的一列放在最左边。
最左前缀匹配原则,非常重要的原则,mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配,比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整。
=和in可以乱序,比如a = 1 and b = 2 and c = 3 建立(a,b,c)索引可以任意顺序,mysql的查询优化器会帮你优化成索引可以识别的形式

B树和B+树的区别

在B树中,你可以将键和值存放在内部节点和叶子节点;但在B+树中,内部节点都是键,没有值,叶子节点同时存放键和值。
B+树的叶子节点有一条链相连,而B树的叶子节点各自独立。

数据库为什么使用B+树而不是B树

B树只适合随机检索,而B+树同时支持随机检索和顺序检索;
B+树空间利用率更高,可减少I/O次数,磁盘读写代价更低。一般来说,索引本身也很大,不可能全部存储在内存中,因此索引往往以索引文件的形式存储的磁盘上。这样的话,索引查找过程中就要产生磁盘I/O消耗。B+树的内部结点并没有指向关键字具体信息的指针,只是作为索引使用,其内部结点比B树小,盘块能容纳的结点中关键字数量更多,一次性读入内存中可以查找的关键字也就越多,相对的,IO读写次数也就降低了。而IO读写次数是影响索引检索效率的最大因素;
B+树的查询效率更加稳定。B树搜索有可能会在非叶子结点结束,越靠近根节点的记录查找时间越短,只要找到关键字即可确定记录的存在,其性能等价于在关键字全集内做一次二分查找。而在B+树中,顺序检索比较明显,随机检索时,任何关键字的查找都必须走一条从根节点到叶节点的路,所有关键字的查找路径长度相同,导致每一个关键字的查询效率相当。
B-树在提高了磁盘IO性能的同时并没有解决元素遍历的效率低下的问题。B+树的叶子节点使用指针顺序连接在一起,只要遍历叶子节点就可以实现整棵树的遍历。而且在数据库中基于范围的查询是非常频繁的,而B树不支持这样的操作。
增删文件(节点)时,效率更高。因为B+树的叶子节点包含所有关键字,并以有序的链表结构存储,这样可很好提高增删效率。

事物的四大特性(ACID)介绍一下?

原子性: 事务是最小的执行单位,不允许分割。事务的原子性确保动作要么全部完成,要么完全不起作用;
一致性: 执行事务前后,数据保持一致,多个事务对同一个数据读取的结果是相同的;
隔离性: 并发访问数据库时,一个用户的事务不被其他事务所干扰,各并发事务之间数据库是独立的;
持久性: 一个事务被提交之后。它对数据库中数据的改变是持久的,即使数据库发生故障也不应该对其有任何影响。

什么是脏读?幻读?不可重复读?

脏读(Drity Read):某个事务已更新一份数据,另一个事务在此时读取了同一份数据,由于某些原因,前一个RollBack了操作,则后一个事务所读取的数据就会是不正确的。
不可重复读(Non-repeatable read):在一个事务的两次查询之中数据不一致,这可能是两次查询过程中间插入了一个事务更新的原有的数据。
幻读(Phantom Read):在一个事务的两次查询中数据笔数不一致,例如有一个事务查询了几列(Row)数据,而另一个事务却在此时插入了新的几列数据,先前的事务在接下来的查询中,就会发现有几列数据是它先前所没有的。

什么是事务的隔离级别?MySQL的默认隔离级别是什么?

(1)读未提交,Read Uncommitted:这个很坑爹,就是说某个事务还没提交的时候,修改的数据,就让别的事务给读到了,这就恶心了,很容易导致出错的。这个也叫做脏读。

(2)读已提交,Read Committed(不可重复读):这个比上面那个稍微好一点,但是一样比较尴尬,就是说事务A在跑的时候, 先查询了一个数据是值1,然后过了段时间,事务B把那个数据给修改了一下还提交了,此时事务A再次查询这个数据就成了值2了,这是读了人家事务提交的数据啊,所以是读已提交。这个也叫做不可重复读,就是所谓的一个事务内对一个数据两次读,可能会读到不一样的值。

(3)可重复读,Read Repeatable:这个就是比上面那个再好点儿,就是说事务A在执行过程中,对某个数据的值,无论读多少次都是值1;哪怕这个过程中事务B修改了数据的值还提交了,但是事务A读到的还是自己事务开始时这个数据的值。

(4)串行化:幻读,不可重复读和可重复读都是针对两个事务同时对某条数据在修改,但是幻读针对的是插入,比如某个事务把所有行的某个字段都修改为了2,结果另外一个事务插入了一条数据,那个字段的值是1,然后就尴尬了。第一个事务会突然发现多出来一条数据,那个数据的字段是1。如果要解决幻读,就需要使用串行化级别的隔离级别,所有事务都串行起来,不允许多个事务并行操作。

MySQL的默认隔离级别是Read Repeatable,就是可重复读,就是说每个事务都会开启一个自己要操作的某个数据的快照,事务期间,读到的都是这个数据的快照罢了,对一个数据的多次读都是一样的。

但是另外几个隔离级别都是提供的。

我们聊下MySQL是如何实现Read Repeatable的吧,因为一般我们都不修改这个隔离级别,但是你得清楚是怎么回事儿,MySQL是通过MVCC机制来实现的,就是多版本并发控制,multi-version concurrency control。

innodb存储引擎,会在每行数据的最后加两个隐藏列,一个保存行的创建时间,一个保存行的删除时间,但是这儿存放的不是时间,而是事务id,事务id是mysql自己维护的自增的,全局唯一。

事务id,在mysql内部是全局唯一递增的,事务id=1,事务id=2,事务id=3

id		name 		创建事务id		删除事务id

1	张三		120				122
2		李四		119				空
2		小李四		122				空

事务id=121的事务,查询id=1的这一行的时候,一定会找到创建事务id <= 当前事务id的那一行,select * from table where id=1,就可以查到上面那一行

事务id=122的事务,将id=1的这一行给删除了,此时就会将id=1的行的删除事务id设置成122

事务id=121的事务,再次查询id=1的那一行,能查到吗?能查到,要求创建事务id <= 当前事务id,当前事务id < 删除事务id

事务id=121的事务,查询id=2的那一行,查到name=李四

事务id=122的事务,将id=2的那一行的name修改成name=小李四

事务id=121的事务,查询id=2的那一行,答案是:李四,创建事务id <= 当前事务id,当前事务id < 删除事务id

在一个事务内查询的时候,mysql只会查询创建时间的事务id小于等于当前事务id的行,这样可以确保这个行是在当前事务中创建,或者是之前创建的;同时一个行的删除时间的事务id要么没有定义(就是没删除),要么是必当前事务id大(在事务开启之后才被删除);满足这两个条件的数据都会被查出来。

那么如果某个事务执行期间,别的事务更新了一条数据呢?这个很关键的一个实现,其实就是在innodb中,是插入了一行记录,然后将新插入的记录的创建时间设置为新的事务的id,同时将这条记录之前的那个版本的删除时间设置为新的事务的id。
你的这个事务其实对某行记录的查询,始终都是查找的之前的那个快照,因为之前的那个快照的创建时间小于等于自己事务id,然后删除时间的事务id比自己事务id大,所以这个事务运行期间,会一直读取到这条数据的同一个版本。

mysql中 in 和 exists 区别

mysql中的in语句是把外表和内表作hash 连接,而exists语句是对外表作loop循环,每次loop循环再对内表进行查询。一直大家都认为exists比in语句的效率要高,这种说法其实是不准确的。这个是要区分环境的。

如果查询的两个表大小相当,那么用in和exists差别不大。
如果两个表中一个较小,一个是大表,则子查询表大的用exists,子查询表小的用in。
not in 和not exists:如果查询语句使用了not in,那么内外表都进行全表扫描,没有用到索引;而not extsts的子查询依然能用到表上的索引。所以无论那个表大,用not exists都比not in要快

varchar与char的区别

char的特点
char表示定长字符串,长度是固定的;
如果插入数据的长度小于char的固定长度时,则用空格填充;
因为长度固定,所以存取速度要比varchar快很多,甚至能快50%,但正因为其长度固定,所以会占据多余的空间,是空间换时间的做法;
对于char来说,最多能存放的字符个数为255,和编码无关
varchar的特点
varchar表示可变长字符串,长度是可变的;
插入的数据是多长,就按照多长来存储;
varchar在存取方面与char相反,它存取慢,因为长度不固定,但正因如此,不占据多余的空间,是时间换空间的做法;
对于varchar来说,最多能存放的字符个数为65532
总之,结合性能角度(char更快)和节省磁盘空间角度(varchar更小),具体情况还需具体来设计数据库才是妥当的做法。

varchar(50)中50的涵义

最多存放50个字符,varchar(50)和(200)存储hello所占空间一样,但后者在排序时会消耗更多内存,因为order by col采用fixed_length计算col长度(memory引擎也一样)。在早期 MySQL 版本中, 50 代表字节数,现在代表字符数。

int(20)中20的涵义

是指显示字符的长度。20表示最大显示宽度为20,但仍占4字节存储,存储范围不变;
不影响内部存储,只是影响带 zerofill 定义的 int 时,前面补多少个 0,易于报表展示

FLOAT和DOUBLE的区别是什么?

FLOAT类型数据可以存储至多8位十进制数,并在内存中占4字节。
DOUBLE类型数据可以存储至多18位十进制数,并在内存中占8字节。

如何定位及优化SQL语句的性能问题?创建的索引有没有被使用到?或者说怎么才可以知道这条语句运行很慢的原因?

对于低性能的SQL语句的定位,最重要也是最有效的方法就是使用执行计划,MySQL提供了explain命令来查看语句的执行计划。 我们知道,不管是哪种数据库,或者是哪种数据库引擎,在对一条SQL语句进行执行的过程中都会做很多相关的优化,对于查询语句,最重要的优化方式就是使用索引。 而执行计划,就是显示数据库引擎对于SQL语句的执行的详细情况,其中包含了是否使用索引,使用什么索引,使用的索引的相关信息等。
执行计划包含的信息 id 有一组数字组成。表示一个查询中各个子查询的执行顺序;
id相同执行顺序由上至下。
id不同,id值越大优先级越高,越先被执行。
id为null时表示一个结果集,不需要使用它查询,常出现在包含union等查询语句中。

table 查询的数据表,当从衍生表中查数据时会显示 x 表示对应的执行计划id partitions 表分区、表创建的时候可以指定通过那个列进行表分区。

type(非常重要,可以看到有没有走索引) 访问类型

ALL 扫描全表数据
index 遍历索引
range 索引范围查找
index_subquery 在子查询中使用 ref
unique_subquery 在子查询中使用 eq_ref
ref_or_null 对Null进行索引的优化的 ref
fulltext 使用全文索引
ref 使用非唯一索引查找数据
eq_ref 在join查询中使用PRIMARY KEYorUNIQUE NOT NULL索引关联。
possible_keys 可能使用的索引,注意不一定会使用。查询涉及到的字段上若存在索引,则该索引将被列出来。当该列为 NULL时就要考虑当前的SQL是否需要优化了。

key 显示MySQL在查询中实际使用的索引,若没有使用索引,显示为NULL。

TIPS:查询中若使用了覆盖索引(覆盖索引:索引的数据覆盖了需要查询的所有数据),则该索引仅出现在key列表中

key_length 索引长度

ref 表示上述表的连接匹配条件,即哪些列或常量被用于查找索引列上的值

rows 返回估算的结果集数目,并不是一个准确的值。

extra 的信息非常丰富,常见的有:

Using index 使用覆盖索引
Using where 使用了用where子句来过滤结果集
Using filesort 使用文件排序,使用非索引列进行排序时出现,非常消耗性能,尽量优化。
Using temporary 使用了临时表 sql优化的目标可以参考阿里开发手册

大表数据查询,怎么优化

优化shema、sql语句+索引;
第二加缓存,memcached, redis;
主从复制,读写分离;
垂直拆分,根据你模块的耦合度,将一个大的系统分为多个小的系统,也就是分布式系统;
水平切分,针对数据量大的表,这一步最麻烦,最能考验技术水平,要选择一个合理的sharding key, 为了有好的查询效率,表结构也要改动,做一定的冗余,应用也要改,sql中尽量带sharding key,将数据定位到限定的表上去查,而不是扫描全部的表;

关心过业务系统里面的sql耗时吗?统计过慢查询吗?对慢查询都怎么优化过?

在业务系统中,除了使用主键进行的查询,其他的我都会在测试库上测试其耗时,慢查询的统计主要由运维在做,会定期将业务中的慢查询反馈给我们。

慢查询的优化首先要搞明白慢的原因是什么? 是查询条件没有命中索引?是load了不需要的数据列?还是数据量太大?

所以优化也是针对这三个方向来的,

首先分析语句,看看是否load了额外的数据,可能是查询了多余的行并且抛弃掉了,可能是加载了许多结果中并不需要的列,对语句进行分析以及重写。
分析语句的执行计划,然后获得其使用索引的情况,之后修改语句或者修改索引,使得语句可以尽可能的命中索引。
如果对语句的优化已经无法进行,可以考虑表中的数据量是否太大,如果是的话可以进行横向或者纵向的分表。
 

sql优化

优化查询过程中的数据访问
访问数据太多导致查询性能下降
确定应用程序是否在检索大量超过需要的数据,可能是太多行或列
确认MySQL服务器是否在分析大量不必要的数据行
避免犯如下SQL语句错误
查询不需要的数据。解决办法:使用limit解决
多表关联返回全部列。解决办法:指定列名
总是返回全部列。解决办法:避免使用SELECT *
重复查询相同的数据。解决办法:可以缓存数据,下次直接读取缓存
是否在扫描额外的记录。解决办法:
使用explain进行分析,如果发现查询需要扫描大量的数据,但只返回少数的行,可以通过如下技巧去优化:
使用索引覆盖扫描,把所有的列都放到索引中,这样存储引擎不需要回表获取对应行就可以返回结果。
改变数据库和表的结构,修改数据表范式
重写SQL语句,让优化器可以以更优的方式执行查询。
优化长难的查询语句
一个复杂查询还是多个简单查询
MySQL内部每秒能扫描内存中上百万行数据,相比之下,响应数据给客户端就要慢得多
使用尽可能小的查询是好的,但是有时将一个大的查询分解为多个小的查询是很有必要的。
切分查询
将一个大的查询分为多个小的相同的查询
一次性删除1000万的数据要比一次删除1万,暂停一会的方案更加损耗服务器开销。
分解关联查询,让缓存的效率更高。
执行单个查询可以减少锁的竞争。
在应用层做关联更容易对数据库进行拆分。
查询效率会有大幅提升。
较少冗余记录的查询。
优化特定类型的查询语句
count(*)会忽略所有的列,直接统计所有列数,不要使用count(列名)
MyISAM中,没有任何where条件的count(*)非常快。
当有where条件时,MyISAM的count统计不一定比其它引擎快。
可以使用explain查询近似值,用近似值替代count(*)
增加汇总表
使用缓存
优化关联查询
确定ON或者USING子句中是否有索引。
确保GROUP BY和ORDER BY只有一个表中的列,这样MySQL才有可能使用索引。
优化子查询
用关联查询替代
优化GROUP BY和DISTINCT
这两种查询据可以使用索引来优化,是最有效的优化方法
关联查询中,使用标识列分组的效率更高
如果不需要ORDER BY,进行GROUP BY时加ORDER BY NULL,MySQL不会再进行文件排序。
WITH ROLLUP超级聚合,可以挪到应用程序处理
优化LIMIT分页
LIMIT偏移量大的时候,查询效率较低
可以记录上次查询的最大ID,下次查询时直接根据该ID来查询
优化UNION查询
UNION ALL的效率高于UNION
 

分库分表后面临的问题

事务支持 分库分表后,就成了分布式事务了。如果依赖数据库本身的分布式事务管理功能去执行事务,将付出高昂的性能代价; 如果由应用程序去协助控制,形成程序逻辑上的事务,又会造成编程方面的负担。

跨库join

只要是进行切分,跨节点Join的问题是不可避免的。但是良好的设计和切分却可以减少此类情况的发生。解决这一问题的普遍做法是分两次查询实现。在第一次查询的结果集中找出关联数据的id,根据这些id发起第二次请求得到关联数据。 分库分表方案产品

跨节点的count,order by,group by以及聚合函数问题 这些是一类问题,因为它们都需要基于全部数据集合进行计算。多数的代理都不会自动处理合并工作。解决方案:与解决跨节点join问题的类似,分别在各个节点上得到结果后在应用程序端进行合并。和join不同的是每个结点的查询可以并行执行,因此很多时候它的速度要比单一大表快很多。但如果结果集很大,对应用程序内存的消耗是一个问题。

数据迁移,容量规划,扩容等问题 来自淘宝综合业务平台团队,它利用对2的倍数取余具有向前兼容的特性(如对4取余得1的数对2取余也是1)来分配数据,避免了行级别的数据迁移,但是依然需要进行表级别的迁移,同时对扩容规模和分表数量都有限制。总得来说,这些方案都不是十分的理想,多多少少都存在一些缺点,这也从一个侧面反映出了Sharding扩容的难度。
ID问题
一旦数据库被切分到多个物理结点上,我们将不能再依赖数据库自身的主键生成机制。一方面,某个分区数据库自生成的ID无法保证在全局上是唯一的;另一方面,应用程序在插入数据之前需要先获得ID,以便进行SQL路由. 一些常见的主键生成策略
posted @ 2022-05-15 13:14  三号小玩家  阅读(554)  评论(0编辑  收藏  举报
Title
三号小玩家的 Mail: 17612457115@163.com, 联系QQ: 1359720840 微信: QQ1359720840