Golang之并发篇

进程和线程

A。进程是程序在操作系统中的一次执行过程,系统进行资源分配和调度的一个独立单位。

B。线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。

C。一个进程可以创建和撤销多个线程;同一进程中的多个线程之间可以并发执行。

并发和并行
并发:多线程程序在一个核的cpu上运行
并行:多线程程序在多个核的cpu上运行
举例。。一个妈给一个碗给多个小孩喂饭,,是并发
    一个妈给每个小孩一人一个碗,就是并行

并发                       并行

协程和线程
协程:独立的栈空间,共享堆空间,调度由用户自己控制,本质上有点类似于用户级协程,这些用户级线程的调度也是自己实现的。
线程:一个线程上可以跑多个协程,协程是轻量级的线程。

例子

package main

import (
    "fmt"
    "time"
)

func test() {
    var i int
    for {
        fmt.Println(i)
        time.Sleep(time.Second)
        i++
    }
}
func main() {
    go test() //起一个协程执行test()
    for {
        fmt.Println("i : runnging in main")
        time.Sleep(time.Second )
    }
}

-

--

设置Golang运行的cpu核数。

1.8版本以上,默认跑多个核

package main

import (
    "fmt"
    "runtime"
)

func main() {
    num := runtime.NumCPU()
    runtime.GOMAXPROCS(num)
    fmt.Println(num)
}

并发计算

package main

import (
    "fmt"
    "sync"
    "time"
)

var (
    m    = make(map[int]uint64)
    lock sync.Mutex
)

type task struct {
    n int
}

func calc(t *task) {
    var sum uint64
    sum = 1
    for i := 1; i < t.n; i++ {
        sum *= uint64(i)
    }
    fmt.Println(t.n, sum)
    lock.Lock()
    m[t.n] = sum
    lock.Unlock()

}

func main() {
    for i := 0; i < 16; i++ {
        t := &task{n: i}
        go calc(t)//并发执行,谁快谁先出 
    }
    time.Sleep(10 * time.Second)
    //lock.Lock()
    //for k, v := range m {
    //    fmt.Printf("%d!=%v\n", k, v)
    //}
    //lock.Unlock()
}
并发计算

 Channel

channel概念
a。类似unix中的管道(pipe)
b.先进先出
c。线程安全,多个goroutine同时访问,不需要枷锁
d。channel是有类型的,一个整数的channel只能存整数

 channel声明

var name chan string
var age chan int
var mapchan chan map[string]string
var test chan student
var test1 chan *student

channel初始化

使用make进行初始化
var test chan int
test = make(chan int,10)

var test chan string
test=make(chan string,10)

channel基本操作

从channel读取数据
var
testChan chan int testChan = make(chan int, 10) var a int a = <-testChan

-从channel写入数据

var testChan chan int
testChan = make(chan int, 10)
var a int = 10
testChan <- a

第一个例子

package main

import "fmt"

type student struct {
    name string
}

func main() {
    var stuChan chan *student
    stuChan = make(chan *student, 10)

    stu := student{name: "stu001"}

    stuChan <- &stu

    var stu01 interface{}
    stu01 = <-stuChan

    var stu02 *student
    stu02, ok := stu01.(*student)
    if !ok {
        fmt.Println("can not convert")
        return
    }
    fmt.Println(stu02)
}

goroutine与channel

package main

import (
    "fmt"
    "time"
)

//起一个读的协程
func write(ch chan int) {
    for i := 0; i < 1000; i++ {
        ch <- i
    }
}

func read(ch chan int) {
    for {
        var b int
        b = <-ch
        fmt.Println(b)
    }
}

func main() {
    intChan := make(chan int, 10)
    go write(intChan)
    go read(intChan)
    time.Sleep(10 * time.Second)
}

读,取,字符串

package main

import (
    "fmt"
    "time"
)

func sendData(ch chan string) {
    ch <- "Washington"
    ch <- "Tripoli"
    ch <- "London"
    ch <- "Beijing"
    ch <- "Tokio"
}

func getData(ch chan string) {
    var input string
    for {
        input = <-ch
        fmt.Println(input)
    }
}

func main() {
    ch := make(chan string)
    go sendData(ch)
    go getData(ch)
    time.Sleep(3 * time.Second)
}
读取字符串

 Channel缓冲区

只能放一个元素的testChan
var testChan chan int
testChan = make(chan int)
var a int
a = <-testChan

-

testChan是带缓冲区的chan,一次可以放10个元素
var
testChan chan int testChan = make(chan int, 10) var a int = 10 testChan <- a

 -

package main

import (
    "fmt"
    "sync"
    "time"
)

var (
    m    = make(map[int]uint64)
    lock sync.Mutex
)

type task struct {
    n int
}

func calc(t *task) {
    var sum uint64
    sum = 1
    for i := 1; i < t.n; i++ {
        sum *= uint64(i)
    }
    fmt.Println(t.n, sum)
    lock.Lock()
    m[t.n] = sum
    lock.Unlock()
}

func main() {
    for i := 0; i < 16; i++ {
        t := &task{n: i}
        go calc(t)
    }
    time.Sleep(10 * time.Second)
    lock.Lock()
    for k, v := range m {
        fmt.Printf("%d!=%v\n", k, v)

    }
    lock.Unlock()
}
goroutine_lock
package main

import (
    "fmt"
)

func calc(taskChan chan int, resChan chan int, exitChan chan bool) {
    for v := range taskChan {
        flag := true
        for i := 2; i < v; i++ {
            if v%i == 0 {
                flag = false
                break
            }
        }
        if flag {
            resChan <- v
        }
    }
    fmt.Println("exit")
    exitChan <- true
}
func main() {
    intChan := make(chan int, 1000)
    resultChan := make(chan int, 1000)
    exitChan := make(chan bool, 8)
    go func() {
        for i := 0; i < 10000; i++ {
            intChan <- i
        }
        close(intChan)
    }()
    for i := 0; i < 8; i++ {
        go calc(intChan, resultChan, exitChan)
    }

    //等待所有计算的goroutine全部退出
    go func() {
        for i := 0; i < 8; i++ {
            <-exitChan
            fmt.Println("wait goroute", i, "exited")
        }
        close(resultChan)
    }()
    for v := range resultChan {
        fmt.Println(v)
    }

}
goroutine_sync
package main

import "fmt"

func send(ch chan int, exitChan chan struct{}) {
    for i := 0; i < 10; i++ {
        ch <- i
    }
    close(ch)
    var a struct{}
    exitChan <- a
}
func recv(ch chan int, exitChan chan struct{}) {
    for {
        v, ok := <-ch
        if !ok {
            break
        }
        fmt.Println(v)
    }
    var a struct{}
    exitChan <- a
}
func main() {
    var ch chan int
    ch = make(chan int, 10)
    exitChan := make(chan struct{}, 2)

    go send(ch, exitChan)
    go recv(ch, exitChan)
    var total = 0
    for _ = range exitChan {
        total++
        if total == 2 {
            break
        }
    }
}
goroutine_sync2

检测管道是否关闭

package main

import "fmt"

func main() {
    var ch chan int
    ch = make(chan int, 10)
    for i := 0; i < 10; i++ {
        ch <- i
    }
    close(ch)
    for {
        var b int
        b, ok := <-ch
        //检测管道是否关闭
        if ok == false {
            fmt.Println("chan is close")
            break
        }
        fmt.Println(b)
    }
}
检测管道是否关闭

 如何关闭chan

1. 使用内置函数close进行关闭,chan关闭之后,for range遍历chan中
已经存在的元素后结束
2. 使用内置函数close进行关闭,chan关闭之后,没有使用for range的写法
需要使用,v, ok := <- ch进行判断chan是否关闭

chan的只读和只写

只读的声明
Var 变量的名字 <-chan int
Var readChan <- chan int

只写的声明
Var 变量的名字 chan<- int
Var writeChan chan<- int

 

package main

import "fmt"

//只写chan
func send(ch chan<- int, exitChan chan struct{}) {
    for i := 0; i < 10; i++ {
        ch <- i
    }
    close(ch)
    var a struct{}
    exitChan <- a
}

//只读chan
func recv(ch <-chan int, exitChan chan struct{}) {
    for {
        v, ok := <-ch
        if !ok {
            break
        }
        fmt.Println(v)
    }
    var a struct{}
    exitChan <- a
}

func main() {
    var ch chan int
    ch = make(chan int, 10) //初始化chan
    exitChan := make(chan struct{}, 2)

    go send(ch, exitChan)
    go recv(ch, exitChan)

    var total = 0
    for _ = range exitChan {
        total++
        if total == 2 {
            break
        }
    }

}
只读只写示例chan

不阻塞

package main

import "fmt"
import "time"

func main() {
    var ch chan int
    ch = make(chan int, 10)
    ch2 := make(chan int, 10)
    go func() {
        var i int
        for {
            ch <- i
            time.Sleep(time.Second)
            ch2 <- i * i
            time.Sleep(time.Second)
            i++
        }
    }()
    for {
        select {
        case v := <-ch:
            fmt.Println(v)
        case v := <-ch2:
            fmt.Println(v)
        case <-time.After(time.Second):
            fmt.Println("get data timeout")
            time.Sleep(time.Second)
        }
    }
}
chan不阻塞

 

posted @ 2018-01-19 18:38  py鱼  阅读(7820)  评论(0编辑  收藏  举报
点我回主页