复制from PIL import Image
from pytesseract import *
from fnmatch import fnmatch
from queue import Queue
import cv2
import time
import os
def clear_border(img,img_name):
'''去除边框
'''
filename = './out_img/' + img_name.split('.')[0] + '-clearBorder.jpg'
h, w = img.shape[:2]
for y in range(0, w):
for x in range(0, h):
if y < 4 or y > w -4:
img[x, y] = 255
if x < 4 or x > h - 4:
img[x, y] = 255
cv2.imwrite(filename,img)
return img
def interference_line(img, img_name):
'''
干扰线降噪
'''
filename = './out_img/' + img_name.split('.')[0] + '-interferenceline.jpg'
h, w = img.shape[:2]
for y in range(1, w - 1):
for x in range(1, h - 1):
count = 0
if img[x, y - 1] > 245:
count = count + 1
if img[x, y + 1] > 245:
count = count + 1
if img[x - 1, y] > 245:
count = count + 1
if img[x + 1, y] > 245:
count = count + 1
if count > 3:
img[x, y] = 255
cv2.imwrite(filename,img)
return img
def interference_point(img,img_name, x = 0, y = 0):
"""点降噪
9邻域框,以当前点为中心的田字框,黑点个数
:param x:
:param y:
:return:
"""
filename = './out_img/' + img_name.split('.')[0] + '-interferencePoint.jpg'
cur_pixel = img[x,y]
height,width = img.shape[:2]
for y in range(0, width - 1):
for x in range(0, height - 1):
if y == 0:
if x == 0:
sum = int(cur_pixel) \
+ int(img[x, y + 1]) \
+ int(img[x + 1, y]) \
+ int(img[x + 1, y + 1])
if sum <= 2 * 245:
img[x, y] = 0
elif x == height - 1:
sum = int(cur_pixel) \
+ int(img[x, y + 1]) \
+ int(img[x - 1, y]) \
+ int(img[x - 1, y + 1])
if sum <= 2 * 245:
img[x, y] = 0
else:
sum = int(img[x - 1, y]) \
+ int(img[x - 1, y + 1]) \
+ int(cur_pixel) \
+ int(img[x, y + 1]) \
+ int(img[x + 1, y]) \
+ int(img[x + 1, y + 1])
if sum <= 3 * 245:
img[x, y] = 0
elif y == width - 1:
if x == 0:
sum = int(cur_pixel) \
+ int(img[x + 1, y]) \
+ int(img[x + 1, y - 1]) \
+ int(img[x, y - 1])
if sum <= 2 * 245:
img[x, y] = 0
elif x == height - 1:
sum = int(cur_pixel) \
+ int(img[x, y - 1]) \
+ int(img[x - 1, y]) \
+ int(img[x - 1, y - 1])
if sum <= 2 * 245:
img[x, y] = 0
else:
sum = int(cur_pixel) \
+ int(img[x - 1, y]) \
+ int(img[x + 1, y]) \
+ int(img[x, y - 1]) \
+ int(img[x - 1, y - 1]) \
+ int(img[x + 1, y - 1])
if sum <= 3 * 245:
img[x, y] = 0
else:
if x == 0:
sum = int(img[x, y - 1]) \
+ int(cur_pixel) \
+ int(img[x, y + 1]) \
+ int(img[x + 1, y - 1]) \
+ int(img[x + 1, y]) \
+ int(img[x + 1, y + 1])
if sum <= 3 * 245:
img[x, y] = 0
elif x == height - 1:
sum = int(img[x, y - 1]) \
+ int(cur_pixel) \
+ int(img[x, y + 1]) \
+ int(img[x - 1, y - 1]) \
+ int(img[x - 1, y]) \
+ int(img[x - 1, y + 1])
if sum <= 3 * 245:
img[x, y] = 0
else:
sum = int(img[x - 1, y - 1]) \
+ int(img[x - 1, y]) \
+ int(img[x - 1, y + 1]) \
+ int(img[x, y - 1]) \
+ int(cur_pixel) \
+ int(img[x, y + 1]) \
+ int(img[x + 1, y - 1]) \
+ int(img[x + 1, y]) \
+ int(img[x + 1, y + 1])
if sum <= 4 * 245:
img[x, y] = 0
cv2.imwrite(filename,img)
return img
def _get_dynamic_binary_image(filedir, img_name):
'''
自适应阀值二值化
'''
filename = './out_img/' + img_name.split('.')[0] + '-binary.jpg'
img_name = filedir + '/' + img_name
print('.....' + img_name)
im = cv2.imread(img_name)
im = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
th1 = cv2.adaptiveThreshold(im, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 21, 1)
cv2.imwrite(filename,th1)
return th1
def _get_static_binary_image(img, threshold = 140):
'''
手动二值化
'''
img = Image.open(img)
img = img.convert('L')
pixdata = img.load()
w, h = img.size
for y in range(h):
for x in range(w):
if pixdata[x, y] < threshold:
pixdata[x, y] = 0
else:
pixdata[x, y] = 255
return img
def cfs(im,x_fd,y_fd):
'''用队列和集合记录遍历过的像素坐标代替单纯递归以解决cfs访问过深问题
'''
xaxis=[]
yaxis=[]
visited =set()
q = Queue()
q.put((x_fd, y_fd))
visited.add((x_fd, y_fd))
offsets=[(1, 0), (0, 1), (-1, 0), (0, -1)]
while not q.empty():
x,y=q.get()
for xoffset,yoffset in offsets:
x_neighbor,y_neighbor = x+xoffset,y+yoffset
if (x_neighbor,y_neighbor) in (visited):
continue
visited.add((x_neighbor, y_neighbor))
try:
if im[x_neighbor, y_neighbor] == 0:
xaxis.append(x_neighbor)
yaxis.append(y_neighbor)
q.put((x_neighbor,y_neighbor))
except IndexError:
pass
if (len(xaxis) == 0 | len(yaxis) == 0):
xmax = x_fd + 1
xmin = x_fd
ymax = y_fd + 1
ymin = y_fd
else:
xmax = max(xaxis)
xmin = min(xaxis)
ymax = max(yaxis)
ymin = min(yaxis)
return ymax,ymin,xmax,xmin
def detectFgPix(im,xmax):
'''搜索区块起点
'''
h,w = im.shape[:2]
for y_fd in range(xmax+1,w):
for x_fd in range(h):
if im[x_fd,y_fd] == 0:
return x_fd,y_fd
def CFS(im):
'''切割字符位置
'''
zoneL=[]
zoneWB=[]
zoneHB=[]
xmax=0
for i in range(10):
try:
x_fd,y_fd = detectFgPix(im,xmax)
xmax,xmin,ymax,ymin=cfs(im,x_fd,y_fd)
L = xmax - xmin
H = ymax - ymin
zoneL.append(L)
zoneWB.append([xmin,xmax])
zoneHB.append([ymin,ymax])
except TypeError:
return zoneL,zoneWB,zoneHB
return zoneL,zoneWB,zoneHB
def cutting_img(im,im_position,img,xoffset = 1,yoffset = 1):
filename = './out_img/' + img.split('.')[0]
im_number = len(im_position[1])
for i in range(im_number):
im_start_X = im_position[1][i][0] - xoffset
im_end_X = im_position[1][i][1] + xoffset
im_start_Y = im_position[2][i][0] - yoffset
im_end_Y = im_position[2][i][1] + yoffset
cropped = im[im_start_Y:im_end_Y, im_start_X:im_end_X]
cv2.imwrite(filename + '-cutting-' + str(i) + '.jpg',cropped)
def main():
filedir = './easy_img'
for file in os.listdir(filedir):
if fnmatch(file, '*.png'):
img_name = file
im = _get_dynamic_binary_image(filedir, img_name)
im = clear_border(im,img_name)
im = interference_line(im,img_name)
im = interference_point(im,img_name)
im_position = CFS(im)
maxL = max(im_position[0])
minL = min(im_position[0])
if(maxL > minL + minL * 0.7):
maxL_index = im_position[0].index(maxL)
minL_index = im_position[0].index(minL)
im_position[0][maxL_index] = maxL // 2
im_position[0].insert(maxL_index + 1, maxL // 2)
im_position[1][maxL_index][1] = im_position[1][maxL_index][0] + maxL // 2
im_position[1].insert(maxL_index + 1, [im_position[1][maxL_index][1] + 1, im_position[1][maxL_index][1] + 1 + maxL // 2])
im_position[2].insert(maxL_index + 1, im_position[2][maxL_index])
cutting_img(im,im_position,img_name,1,1)
cutting_img_num = 0
for file in os.listdir('./out_img'):
try:
print(file)
a= Image.open(f'./out_img/{file}')
text = image_to_string(a)
print('识别内容',text)
print('-'*300)
except:
pass
if __name__ == '__main__':
main()
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· winform 绘制太阳,地球,月球 运作规律
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
2019-07-13 数据库的基础概念
2019-07-13 MYSQL数据库的增删改查
2019-07-13 MYSQL数据库的安装,配置文件,登入