爬虫进阶篇

 

Cookie的使用

为什么要使用Cookie呢?

Cookie,指某些网站为了辨别用户身份、进行session跟踪而储存在用户本地终端上的数据(通常经过加密)

比如说有些网站需要登录后才能访问某个页面,在登录之前,你想抓取某个页面内容是不允许的。那么我们可以利用Urllib2库保存我们登录的Cookie,然后再抓取其他页面就达到目的了。

在此之前呢,我们必须先介绍一个opener的概念。

  1.Opener

    当你获取一个URL你使用一个opener(一个urllib2.OpenerDirector的实例)。在前面,我们都是使用的默认的opener,也就是urlopen。它是一个特殊的opener,可以理解成opener的一个特殊实例,传入的参数仅仅是url,data,timeout。

如果我们需要用到Cookie,只用这个opener是不能达到目的的,所以我们需要创建更一般的opener来实现对Cookie的设置。

  2.Cookielib

    cookielib模块的主要作用是提供可存储cookie的对象,以便于与urllib2模块配合使用来访问Internet资源。Cookielib模块非常强大,我们可以利用本模块的CookieJar类的对象来捕获cookie并在后续连接请求时重新发送,比如可以实现模拟登录功能。该模块主要的对象有CookieJar、FileCookieJar、MozillaCookieJar、LWPCookieJar。

它们的关系:CookieJar —-派生—->FileCookieJar  —-派生—–>MozillaCookieJar和LWPCookieJar

   1)获取Cookie保存到变量

    首先,我们先利用CookieJar对象实现获取cookie的功能,存储到变量中,先来感受一下

    一部分是我自己的解释

# import urllib2
# import cookielib
# #声明一个CookieJar对象实例来保存cookie
# 获取一个保存cookie对象??
# cookie = cookielib.CookieJar()

# #利用urllib2库的HTTPCookieProcessor对象来创建cookie处理器
#将一个保存cookie对象,和一个HTTP的cookie的处理绑定----??
# handler=urllib2.HTTPCookieProcessor(cookie)

# #通过handler来构建opener
#创建一个opener,将保存了cookie的http处理器,还有设置一个handler用于处理http的URL的打开
# opener = urllib2.build_opener(handler)
# #此处的open方法同urllib2的urlopen方法,也可以传入request
# response = opener.open('http://www.baidu.com')
# for item in cookie:
#     print 'Name = '+item.name
#     print 'Value = '+item.value

  我们使用以上方法将cookie保存到变量中,然后打印出了cookie中的值,运行结果如下

Value = B07B663B645729F11F659C02AAE65B4C:FG=1
Name = BAIDUPSID
Value = B07B663B645729F11F659C02AAE65B4C
Name = H_PS_PSSID
Value = 12527_11076_1438_10633
Name = BDSVRTM
Value = 0
Name = BD_HOME
Value = 0

  

  2)保存Cookie到文件

在上面的方法中,我们将cookie保存到了cookie这个变量中,如果我们想将cookie保存到文件中该怎么做呢?这时,我们就要用到(文件自动生成)

FileCookieJar这个对象了,在这里我们使用它的子类MozillaCookieJar来实现Cookie的保存

import cookielib
import urllib2

#设置保存cookie的文件,同级目录下的cookie.txt
filename = 'cookie.txt'
#声明一个MozillaCookieJar对象实例来保存cookie,之后写入文件
cookie = cookielib.MozillaCookieJar(filename)
#利用urllib2库的HTTPCookieProcessor对象来创建cookie处理器
handler = urllib2.HTTPCookieProcessor(cookie)
#通过handler来构建opener
opener = urllib2.build_opener(handler)
#创建一个请求,原理同urllib2的urlopen
response = opener.open("http://www.baidu.com")
#保存cookie到文件
cookie.save(ignore_discard=True, ignore_expires=True)

  

  由此可见,ignore_discard的意思是即使cookies将被丢弃也将它保存下来,ignore_expires的意思是如果在该文件中cookies已经存在,则覆盖原文件写入,在这里,我们将这两个全部设置为True。运行之后,cookies将被保存到cookie.txt文件中,我们查看一下内容,附图如下

3)从文件中获取Cookie并访问

那么我们已经做到把Cookie保存到文件中了,如果以后想使用,可以利用下面的方法来读取cookie并访问网站,感受一下

 

import cookielib
import urllib2

#创建MozillaCookieJar实例对象
cookie = cookielib.MozillaCookieJar()
#从文件中读取cookie内容到变量
cookie.load('cookie.txt', ignore_discard=True, ignore_expires=True)
#创建请求的request
req = urllib2.Request("http://www.baidu.com")
#利用urllib2的build_opener方法创建一个opener
opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cookie))
response = opener.open(req)
print response.read()

  

  设想,如果我们的 cookie.txt 文件中保存的是某个人登录百度的cookie,那么我们提取出这个cookie文件内容,就可以用以上方法模拟这个人的账号登录百度。

   4)利用cookie模拟网站登录

    下面我们以我们学校的教育系统为例,利用cookie实现模拟登录,并将cookie信息保存到文本文件中,来感受一下cookie大法吧!

    注意:密码我改了啊,别偷偷登录郑的选课系统 o(╯□╰)o

 

 

import urllib2
import cookielib
 
filename = 'cookie.txt'
#声明一个MozillaCookieJar对象实例来保存cookie,之后写入文件
cookie = cookielib.MozillaCookieJar(filename)
opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cookie))
postdata = urllib.urlencode({
            'stuid':'201200131012',
            'pwd':'23342321'
        })
#登录教务系统的URL
loginUrl = 'http://jwxt.sdu.edu.cn:7890/pls/wwwbks/bks_login2.login'
#模拟登录,并把cookie保存到变量
result = opener.open(loginUrl,postdata)
#保存cookie到cookie.txt中
cookie.save(ignore_discard=True, ignore_expires=True)
#利用cookie请求访问另一个网址,此网址是成绩查询网址
gradeUrl = 'http://jwxt.sdu.edu.cn:7890/pls/wwwbks/bkscjcx.curscopre'
#请求访问成绩查询网址
result = opener.open(gradeUrl)
print result.read()

  以上程序的原理如下

  创建一个带有cookie的opener,在访问登录的URL时,将登录后的cookie保存下来,然后利用这个cookie来访问其他网址。

  如登录之后才能查看的成绩查询呀,本学期课表呀等等网址,模拟登录就这么实现啦,是不是很酷炫?

  

  正则表达式

 正则表达式是用来匹配字符串非常强大的工具,在其他编程语言中同样有正则表达式的概念,Python同样不例外,利用了正则表达式,我们想要从返回的页面内容提取出我们想要的内容就易如反掌了。

正则表达式的大致匹配过程是:
1.依次拿出表达式和文本中的字符比较,
2.如果每一个字符都能匹配,则匹配成功;一旦有匹配不成功的字符则匹配失败。
3.如果表达式中有量词或边界,这个过程会稍微有一些不同。

  2.正则表达式的语法规则

    下面是Python中正则表达式的一些匹配规则,图片资料来自CSDN

 

  3.正则表达式相关注解

    (1)数量词的贪婪模式与非贪婪模式

  正则表达式通常用于在文本中查找匹配的字符串。Python里数量词默认是贪婪的(在少数语言里也可能是默认非贪婪),总是尝试匹配尽可能多的字符;非贪婪的则相反,总是尝试匹配尽可能少的字符。例如:正则表达式”ab*”如果用于查找”abbbc”,将找到”abbb”。而如果使用非贪婪的数量词”ab*?”,将找到”a”。

注:我们一般使用非贪婪模式来提取。

  (2)反斜杠问题

  与大多数编程语言相同,正则表达式里使用”\”作为转义字符,这就可能造成反斜杠困扰。假如你需要匹配文本中的字符”\”,那么使用编程语言表示的正则表达式里将需要4个反斜杠”\\\\”:前两个和后两个分别用于在编程语言里转义成反斜杠,转换成两个反斜杠后再在正则表达式里转义成一个反斜杠。

Python里的原生字符串很好地解决了这个问题,这个例子中的正则表达式可以使用r”\\”表示。同样,匹配一个数字的”\\d”可以写成r”\d”。有了原生字符串,妈妈也不用担心是不是漏写了反斜杠,写出来的表达式也更直观勒。

  4.Python Re模块

    Python 自带了re模块,它提供了对正则表达式的支持。主要用到的方法列举如下

 

#返回pattern对象
re.compile(string[,flag])  
#以下为匹配所用函数
re.match(pattern, string[, flags])
re.search(pattern, string[, flags])
re.split(pattern, string[, maxsplit])
re.findall(pattern, string[, flags])
re.finditer(pattern, string[, flags])
re.sub(pattern, repl, string[, count])
re.subn(pattern, repl, string[, count])

  在介绍这几个方法之前,我们先来介绍一下pattern的概念,pattern可以理解为一个匹配模式,那么我们怎么获得这个匹配模式呢?很简单,我们需要利用re.compile方法就可以。例如

 

pattern = re.compile(r'hello')

 

在参数中我们传入了原生字符串对象,通过compile方法编译生成一个pattern对象,然后我们利用这个对象来进行进一步的匹配。

另外大家可能注意到了另一个参数 flags,在这里解释一下这个参数的含义:

参数flag是匹配模式,取值可以使用按位或运算符’|’表示同时生效,比如re.I | re.M。

可选值有:

 

 • re.I(全拼:IGNORECASE): 忽略大小写(括号内是完整写法,下同)
 • re.M(全拼:MULTILINE): 多行模式,改变'^'和'$'的行为(参见上图)
 • re.S(全拼:DOTALL): 点任意匹配模式,改变'.'的行为
 • re.L(全拼:LOCALE): 使预定字符类 \w \W \b \B \s \S 取决于当前区域设定
 • re.U(全拼:UNICODE): 使预定字符类 \w \W \b \B \s \S \d \D 取决于unicode定义的字符属性
 • re.X(全拼:VERBOSE): 详细模式。这个模式下正则表达式可以是多行,忽略空白字符,并可以加入注释。

  在刚才所说的另外几个方法例如 re.match 里我们就需要用到这个pattern了,下面我们一一介绍。

 

注:以下七个方法中的flags同样是代表匹配模式的意思,如果在pattern生成时已经指明了flags,那么在下面的方法中就不需要传入这个参数了。

  (1)re.match(pattern, string[, flags])

  这个方法将会从string(我们要匹配的字符串)的开头开始,尝试匹配pattern,一直向后匹配,如果遇到无法匹配的字符,立即返回None,如果匹配未结束已经到达string的末尾,也会返回None。两个结果均表示匹配失败,否则匹配pattern成功,同时匹配终止,不再对string向后匹配。下面我们通过一个例子理解一下

 

__author__ = 'CQC'
# -*- coding: utf-8 -*-

#导入re模块
import re

# 将正则表达式编译成Pattern对象,注意hello前面的r的意思是“原生字符串”
pattern = re.compile(r'hello')

# 使用re.match匹配文本,获得匹配结果,无法匹配时将返回None
result1 = re.match(pattern,'hello')
result2 = re.match(pattern,'helloo CQC!')
result3 = re.match(pattern,'helo CQC!')
result4 = re.match(pattern,'hello CQC!')

#如果1匹配成功
if result1:
    # 使用Match获得分组信息
    print result1.group()
else:
    print '1匹配失败!'


#如果2匹配成功
if result2:
    # 使用Match获得分组信息
    print result2.group()
else:
    print '2匹配失败!'


#如果3匹配成功
if result3:
    # 使用Match获得分组信息
    print result3.group()
else:
    print '3匹配失败!'

#如果4匹配成功
if result4:
    # 使用Match获得分组信息
    print result4.group()
else:
    print '4匹配失败!'

 

  运行结果

hello
hello
3匹配失败
hello

 

  匹配分析

  1.第一个匹配,pattern正则表达式为’hello’,我们匹配的目标字符串string也为hello,从头至尾完全匹配,匹配成功。

  2.第二个匹配,string为helloo CQC,从string头开始匹配pattern完全可以匹配,pattern匹配结束,同时匹配终止,后面的o CQC不再匹配,返回匹配成功的信息。

  3.第三个匹配,string为helo CQC,从string头开始匹配pattern,发现到 ‘o’ 时无法完成匹配,匹配终止,返回None

  4.第四个匹配,同第二个匹配原理,即使遇到了空格符也不会受影响。

  我们还看到最后打印出了result.group(),这个是什么意思呢?下面我们说一下关于match对象的的属性和方法
Match对象是一次匹配的结果,包含了很多关于此次匹配的信息,可以使用Match提供的可读属性或方法来获取这些信息。

属性:
1.string: 匹配时使用的文本。
2.re: 匹配时使用的Pattern对象。
3.pos: 文本中正则表达式开始搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。
4.endpos: 文本中正则表达式结束搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。
5.lastindex: 最后一个被捕获的分组在文本中的索引。如果没有被捕获的分组,将为None。
6.lastgroup: 最后一个被捕获的分组的别名。如果这个分组没有别名或者没有被捕获的分组,将为None。
方法:
1.group([group1, …]):
获得一个或多个分组截获的字符串;指定多个参数时将以元组形式返回。group1可以使用编号也可以使用别名;编号0代表整个匹配的子串;不填写参数时,返回group(0);没有截获字符串的组返回None;截获了多次的组返回最后一次截获的子串。
2.groups([default]):
以元组形式返回全部分组截获的字符串。相当于调用group(1,2,…last)。default表示没有截获字符串的组以这个值替代,默认为None。
3.groupdict([default]):
返回以有别名的组的别名为键、以该组截获的子串为值的字典,没有别名的组不包含在内。default含义同上。
4.start([group]):
返回指定的组截获的子串在string中的起始索引(子串第一个字符的索引)。group默认值为0。
5.end([group]):
返回指定的组截获的子串在string中的结束索引(子串最后一个字符的索引+1)。group默认值为0。
6.span([group]):
返回(start(group), end(group))。
7.expand(template):
将匹配到的分组代入template中然后返回。template中可以使用\id或\g、\g引用分组,但不能使用编号0。\id与\g是等价的;但\10将被认为是第10个分组,如果你想表达\1之后是字符’0’,只能使用\g0。

  

 下面我们用一个例子来体会一下

# -*- coding: utf-8 -*-
#一个简单的match实例

import re
# 匹配如下内容:单词+空格+单词+任意字符
m = re.match(r'(\w+) (\w+)(?P<sign>.*)', 'hello world!')

print "m.string:", m.string
print "m.re:", m.re
print "m.pos:", m.pos
print "m.endpos:", m.endpos
print "m.lastindex:", m.lastindex
print "m.lastgroup:", m.lastgroup
print "m.group():", m.group()
print "m.group(1,2):", m.group(1, 2)
print "m.groups():", m.groups()
print "m.groupdict():", m.groupdict()
print "m.start(2):", m.start(2)
print "m.end(2):", m.end(2)
print "m.span(2):", m.span(2)
print r"m.expand(r'\g \g\g'):", m.expand(r'\2 \1\3')
 
### output ###
# m.string: hello world!
# m.re: 
# m.pos: 0
# m.endpos: 12
# m.lastindex: 3
# m.lastgroup: sign
# m.group(1,2): ('hello', 'world')
# m.groups(): ('hello', 'world', '!')
# m.groupdict(): {'sign': '!'}
# m.start(2): 6
# m.end(2): 11
# m.span(2): (6, 11)
# m.expand(r'\2 \1\3'): world hello!

  

  (2)re.search(pattern, string[, flags])

  search方法与match方法极其类似,区别在于match()函数只检测re是不是在string的开始位置匹配,search()会扫描整个string查找匹配,match()只有在0位置匹配成功的话才有返回,如果不是开始位置匹配成功的话,match()就返回None。同样,search方法的返回对象同样match()返回对象的方法和属性。我们用一个例子感受一下

#导入re模块
import re

# 将正则表达式编译成Pattern对象
pattern = re.compile(r'world')
# 使用search()查找匹配的子串,不存在能匹配的子串时将返回None
# 这个例子中使用match()无法成功匹配
match = re.search(pattern,'hello world!')
if match:
    # 使用Match获得分组信息
    print match.group()
### 输出 ###
# world

  

  (3)re.split(pattern, string[, maxsplit])

  按照能够匹配的子串将string分割后返回列表。maxsplit用于指定最大分割次数,不指定将全部分割。我们通过下面的例子感受一下。

 

import re

pattern = re.compile(r'\d+')
print re.split(pattern,'one1two2three3four4')

### 输出 ###
# ['one', 'two', 'three', 'four', '']

  

  (4)re.findall(pattern, string[, flags])

  搜索string,以列表形式返回全部能匹配的子串。我们通过这个例子来感受一下

 

import re

pattern = re.compile(r'\d+')
print re.findall(pattern,'one1two2three3four4')

### 输出 ###
# ['1', '2', '3', '4']

  (5)re.finditer(pattern, string[, flags])

搜索string,返回一个顺序访问每一个匹配结果(Match对象)的迭代器。我们通过下面的例子来感受一下

import re
 
pattern = re.compile(r'\d+')
for m in re.finditer(pattern,'one1two2three3four4'):
    print m.group(),
 
### 输出 ###
# 1 2 3 4

  (6)re.sub(pattern, repl, string[, count])

  使用repl替换string中每一个匹配的子串后返回替换后的字符串。
当repl是一个字符串时,可以使用\id或\g、\g引用分组,但不能使用编号0。
当repl是一个方法时,这个方法应当只接受一个参数(Match对象),并返回一个字符串用于替换(返回的字符串中不能再引用分组)。
count用于指定最多替换次数,不指定时全部替换。

import re

pattern = re.compile(r'(\w+) (\w+)')
s = 'i say, hello world!'

print re.sub(pattern,r'\2 \1', s)

def func(m):
    return m.group(1).title() + ' ' + m.group(2).title()

print re.sub(pattern,func, s)

### output ###
# say i, world hello!
# I Say, Hello World!

  

  (7)re.subn(pattern, repl, string[, count])

  返回 (sub(repl, string[, count]), 替换次数)。

import re
 
pattern = re.compile(r'(\w+) (\w+)')
s = 'i say, hello world!'
 
print re.subn(pattern,r'\2 \1', s)
 
def func(m):
    return m.group(1).title() + ' ' + m.group(2).title()
 
print re.subn(pattern,func, s)
 
### output ###
# ('say i, world hello!', 2)
# ('I Say, Hello World!', 2)

  

 5.Python Re模块的另一种使用方式

  在上面我们介绍了7个工具方法,例如match,search等等,不过调用方式都是 re.match,re.search的方式,其实还有另外一种调用方式,可以通过pattern.match,pattern.search调用,这样调用便不用将pattern作为第一个参数传入了,大家想怎样调用皆可。

函数API列表

 match(string[, pos[, endpos]]) | re.match(pattern, string[, flags])
 search(string[, pos[, endpos]]) | re.search(pattern, string[, flags])
 split(string[, maxsplit]) | re.split(pattern, string[, maxsplit])
 findall(string[, pos[, endpos]]) | re.findall(pattern, string[, flags])
 finditer(string[, pos[, endpos]]) | re.finditer(pattern, string[, flags])
 sub(repl, string[, count]) | re.sub(pattern, repl, string[, count])
 subn(repl, string[, count]) |re.sub(pattern, repl, string[, count])

  

具体的调用方法不必详说了,原理都类似,只是参数的变化不同。小伙伴们尝试一下吧~

 

posted @ 2016-09-10 14:09  青春永不言弃  阅读(535)  评论(0编辑  收藏  举报