线程
今日内容概要
- 开启线程的两种方式
- TCP服务端实现并发的效果
- 线程对象的join方法
- 线程间数据共享
- 线程对象属性及其他方法
- 守护线程
- 线程互斥锁
- GIL全局解释器锁
- 多进程与多线程的实际应用场景
今日内容详细
开启线程的两种方式
# from multiprocessing import Process
# from threading import Thread
# import time
#
#
# def task(name):
# print('%s is running'%name)
# time.sleep(1)
# print('%s is over'%name)
#
#
# # 开启线程不需要在main下面执行代码 直接书写就可以
# # 但是我们还是习惯性的将启动命令写在main下面
# t = Thread(target=task,args=('egon',))
# # p = Process(target=task,args=('jason',))
# # p.start()
# t.start() # 创建线程的开销非常小 几乎是代码一执行线程就已经创建了
# print('主')
from threading import Thread
import time
class MyThead(Thread):
def __init__(self, name):
"""针对刷个下划线开头双下滑线结尾(__init__)的方法 统一读成 双下init"""
# 重写了别人的方法 又不知道别人的方法里有啥 你就调用父类的方法
super().__init__()
self.name = name
def run(self):
print('%s is running'%self.name)
time.sleep(1)
print('egon DSB')
if __name__ == '__main__':
t = MyThead('egon')
t.start()
print('主')
TCP服务端实现并发的效果
import socket
from threading import Thread
from multiprocessing import Process
"""
服务端
1.要有固定的IP和PORT
2.24小时不间断提供服务
3.能够支持并发
从现在开始要养成一个看源码的习惯
我们前期要立志称为拷贝忍者 卡卡西 不需要有任何的创新
等你拷贝到一定程度了 就可以开发自己的思想了
"""
server =socket.socket() # 括号内不加参数默认就是TCP协议
server.bind(('127.0.0.1',8080))
server.listen(5)
# 将服务的代码单独封装成一个函数
def talk(conn):
# 通信循环
while True:
try:
data = conn.recv(1024)
# 针对mac linux 客户端断开链接后
if len(data) == 0: break
print(data.decode('utf-8'))
conn.send(data.upper())
except ConnectionResetError as e:
print(e)
break
conn.close()
# 链接循环
while True:
conn, addr = server.accept() # 接客
# 叫其他人来服务客户
# t = Thread(target=talk,args=(conn,))
t = Process(target=talk,args=(conn,))
t.start()
"""客户端"""
import socket
client = socket.socket()
client.connect(('127.0.0.1',8080))
while True:
client.send(b'hello world')
data = client.recv(1024)
print(data.decode('utf-8'))
线程对象的join方法
from threading import Thread
import time
def task(name):
print('%s is running'%name)
time.sleep(3)
print('%s is over'%name)
if __name__ == '__main__':
t = Thread(target=task,args=('egon',))
t.start()
t.join() # 主线程等待子线程运行结束再执行
print('主')
同一个进程下的多个线程数据是共享的
from threading import Thread
import time
money = 100
def task():
global money
money = 666
print(money)
if __name__ == '__main__':
t = Thread(target=task)
t.start()
t.join()
print(money)
线程对象属性及其他方法
from threading import Thread, active_count, current_thread
import os,time
def task(n):
# print('hello world',os.getpid())
print('hello world',current_thread().name)
time.sleep(n)
if __name__ == '__main__':
t = Thread(target=task,args=(1,))
t1 = Thread(target=task,args=(2,))
t.start()
t1.start()
t.join()
print('主',active_count()) # 统计当前正在活跃的线程数
# print('主',os.getpid())
# print('主',current_thread().name) # 获取线程名字
守护线程
from threading import Thread
import time
def task():
print(1)
time.sleep(1)
print(2)
def task2():
print(3)
time.sleep(0.5)
print(4)
if __name__ == '__main__':
a = Thread(target=task)
b = Thread(target=task2)
a.daemon = True
a.start()
b.start()
print('主程序')
"""
主线程运行结束之后不会立刻结束 会等待所有其他非守护线程结束才会结束
因为主线程的结束意味着所在的进程的结束
主线程结束,守护线程立即结束。
主线程结束,要等其他 非守护线程结束,才能结束,因为主线程结束意味着 进程结束。
如果 非守护线程 ,运行时间长,主线程一直不能结束,而守护线程的时间短,运行已经结束了,所以,此时,主线程,并没有强行终止 守护线程的运行。
无论是进程还是线程,都遵循:守护xx会等待主xx运行完毕后被销毁。需要强调的是:运行完毕并非终止运行
#1.对主进程来说,运行完毕指的是主进程代码运行完毕
#2.对主线程来说,运行完毕指的是主线程所在的进程内所有非守护线程统统运行完毕,主线程才算运行完毕
#1 主进程在其代码结束后就已经算运行完毕了(守护进程在此时就被回收),然后主进程会一直等非守护的子进程都运行完毕后回收子进程的资源(否则会产生僵尸进程),才会结束,
#2 主线程在其他非守护线程运行完毕后才算运行完毕(守护线程在此时就被回收)。因为主线程的结束意味着进程的结束,进程整体的资源都将被回收,而进程必须保证非守护线程都运行完毕后才能结束。
"""
线程互斥锁
from threading import Thread,Lock
import time
money = 100
mutex = Lock()
def task():
global money
mutex.acquire()
tmp = money
time.sleep(0.1)
money = tmp - 1
mutex.release()
if __name__ == '__main__':
t_list = []
for i in range(100):
t = Thread(target=task)
t.start()
t_list.append(t)
for t in t_list:
t.join()
print(money)
GIL全局解释器锁
Ps:博客园密码:xiaoyuanqujing@666
"""
In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple
native threads from executing Python bytecodes at once. This lock is necessary mainly
because CPython’s memory management is not thread-safe. (However, since the GIL
exists, other features have grown to depend on the guarantees that it enforces.)
"""
"""
python解释器其实有多个版本
Cpython
Jpython
Pypypython
但是普遍使用的都是CPython解释器
在CPython解释器中GIL是一把互斥锁,用来阻止同一个进程下的多个线程的同时执行
同一个进程下的多个线程无法利用多核优势!!!
疑问:python的多线程是不是一点用都没有???无法利用多核优势
因为cpython中的内存管理不是线程安全的
内存管理(垃圾回收机制)
1.应用计数
2.标记清楚
3.分代回收
"""
"""
重点:
1.GIL不是python的特点而是CPython解释器的特点
2.GIL是保证解释器级别的数据的安全
3.GIL会导致同一个进程下的多个线程的无法同时执行即无法利用多核优势(******)
4.针对不同的数据还是需要加不同的锁处理
5.解释型语言的通病:同一个进程下多个线程无法利用多核优势
"""
GIL与普通互斥锁的区别
from threading import Thread,Lock
import time
mutex = Lock()
money = 100
def task():
global money
# with mutex:
# tmp = money
# time.sleep(0.1)
# money = tmp -1
mutex.acquire()
tmp = money
time.sleep(0.1) # 只要你进入IO了 GIL会自动释放
money = tmp - 1
mutex.release()
if __name__ == '__main__':
t_list = []
for i in range(100):
t = Thread(target=task)
t.start()
t_list.append(t)
for t in t_list:
t.join()
print(money)
"""
100个线程起起来之后 要先去抢GIL
我进入io GIL自动释放 但是我手上还有一个自己的互斥锁
其他线程虽然抢到了GIL但是抢不到互斥锁
最终GIL还是回到你的手上 你去操作数据
"""
同一个进程下的多线程无法利用多核优势,是不是就没有用了
"""
多线程是否有用要看具体情况
单核:四个任务(IO密集型\计算密集型)
多核:四个任务(IO密集型\计算密集型)
"""
# 计算密集型 每个任务都需要10s
单核(不用考虑了)
多进程:额外的消耗资源
多线程:介绍开销
多核
多进程:总耗时 10+
多线程:总耗时 40+
# IO密集型
多核
多进程:相对浪费资源
多线程:更加节省资源
代码验证
# 计算密集型
# from multiprocessing import Process
# from threading import Thread
# import os,time
#
#
# def work():
# res = 0
# for i in range(10000000):
# res *= i
#
# if __name__ == '__main__':
# l = []
# print(os.cpu_count()) # 获取当前计算机CPU个数
# start_time = time.time()
# for i in range(12):
# p = Process(target=work) # 1.4679949283599854
# t = Thread(target=work) # 5.698534250259399
# t.start()
# # p.start()
# # l.append(p)
# l.append(t)
# for p in l:
# p.join()
# print(time.time()-start_time)
# IO密集型
from multiprocessing import Process
from threading import Thread
import os,time
def work():
time.sleep(2)
if __name__ == '__main__':
l = []
print(os.cpu_count()) # 获取当前计算机CPU个数
start_time = time.time()
for i in range(4000):
# p = Process(target=work) # 21.149890184402466
t = Thread(target=work) # 3.007986068725586
t.start()
# p.start()
# l.append(p)
l.append(t)
for p in l:
p.join()
print(time.time()-start_time)
总结
"""
多进程和多线程都有各自的优势
并且我们后面在写项目的时候通常可以
多进程下面再开设多线程
这样的话既可以利用多核也可以介绍资源消耗
"""
线程
1、操作系统能够进行运算调度的——最小单位;
进程是系统分配资源的基本单位,线程是CPU调度的基本单位。
线程是CPU调度和分配的基本单位,一定要和 进程是操作系统进行资源分配(包括cpu、内存、磁盘IO等)的最小单位 区别清楚。
有句话说CPU只能看到线程,可以这么理解,假设我是CPU,我闭着眼,操作系统调度器将一个进程分配给我之后,我拿到进程睁开眼,我看到的是什么?我看到的是进程中的很多线程,那么我现在能调度和分配的是什么?进程?不行,因为我看不到其他进程,何来调度分配,只能调度我看到的那些线程,如果我是4核的话,把线程ABCD分配到核心1234,其他的线程依然要等待分配,至于等待多久,如何分配,暂不在本文讨论范围。于是线程是CPU调度和分配的基本单位。
对于多核cpu,进程中的多线程并行执行。对于单核cpu,多线程在单cpu中并发执行,根据时间片切换线程。同一个线程同一时间段只能在一个cpu内核中运行,如果线程数小于cpu内核数,那么将有多余的内核空闲。
单核就是CPU集成了一个运算核心;
双核是两个运算核心,相当于两个CPU同时工作;
四核是四个运算核心,相当于四个CPU同时工作;
单CPU进行进程调度的时候,需要读取上下文+执行程序+保存上下文,即进程切换。
如果这个CPU是单核的话,那么在进程中的不同线程为了使用CPU核心,则会进行线程切换,但是由于共享了程序执行环境,这个线程切换比进程切换开销少了很多。在这里依然是并发,唯一核心同时刻只能执行一个线程。
如果这个CPU是多核的话,那么进程中的不同线程可以使用不同核心,真正的并行出现了。
总结:
1、单CPU中进程只能是并发,多CPU计算机中进程可以并行。
2、单CPU单核中线程只能并发,单CPU多核中线程可以并行。
3、无论是并发还是并行,使用者来看,看到的是多进程,多线程。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列:基于图像分类模型对图像进行分类
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· 25岁的心里话
· ollama系列01:轻松3步本地部署deepseek,普通电脑可用
· 按钮权限的设计及实现