pytorch种, 一维Conv1d, 二维Conv2d

pytorch之nn.Conv1d详解

 

之前学习pytorch用于文本分类的时候,用到了一维卷积,花了点时间了解其中的原理,看网上也没有详细解释的博客,所以就记录一下。

Conv1d
class torch.nn.Conv1d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)

in_channels(int) – 输入信号的通道。在文本分类中,即为词向量的维度
out_channels(int) – 卷积产生的通道。有多少个out_channels,就需要多少个1维卷积
kerner_size(int or tuple) - 卷积核的尺寸,卷积核的大小为(k,),第二个维度是由in_channels来决定的,所以实际上卷积大小为kerner_size*in_channels
stride(int or tuple, optional) - 卷积步长
padding (int or tuple, optional)- 输入的每一条边补充0的层数
dilation(int or tuple, `optional``) – 卷积核元素之间的间距
groups(int, optional) – 从输入通道到输出通道的阻塞连接数
bias(bool, optional) - 如果bias=True,添加偏置
举个例子:

conv1 = nn.Conv1d(in_channels=256,out_channels=100,kernel_size=2)
input = torch.randn(32,35,256)
# batch_size x text_len x embedding_size -> batch_size x embedding_size x text_len
input = input.permute(0,2,1)
out = conv1(input)
print(out.size())

  

这里32为batch_size,35为句子最大长度,256为词向量

再输入一维卷积的时候,需要将32*25*256变换为32*256*35,因为一维卷积是在最后维度上扫的,最后out的大小即为:32*100*(35-2+1)=32*100*34

附上一张图,可以很直观的理解一维卷积是如何用的:

 

图中输入的词向量维度为5,输入大小为7*5,一维卷积和的大小为2、3、4,每个都有两个,总共6个特征。

对于k=4,见图中红色的大矩阵,卷积核大小为4*5,步长为1。这里是针对输入从上到下扫一遍,输出的向量大小为((7-4)/1+1)*1=4*1,最后经过一个卷积核大小为4的max_pooling,变成1个值。最后获得6个值,进行拼接,在经过一个全连接层,输出2个类别的概率。

附上一个代码来详解:

其中,embedding_size=256, feature_size=100, window_sizes=[3,4,5,6], max_text_len=35

 

class TextCNN(nn.Module):
    def __init__(self, config):
        super(TextCNN, self).__init__()
        self.is_training = True
        self.dropout_rate = config.dropout_rate
        self.num_class = config.num_class
        self.use_element = config.use_element
        self.config = config
 
        self.embedding = nn.Embedding(num_embeddings=config.vocab_size, 
                                embedding_dim=config.embedding_size)
        self.convs = nn.ModuleList([
                nn.Sequential(nn.Conv1d(in_channels=config.embedding_size, 
                                        out_channels=config.feature_size, 
                                        kernel_size=h),
#                              nn.BatchNorm1d(num_features=config.feature_size), 
                              nn.ReLU(),
                              nn.MaxPool1d(kernel_size=config.max_text_len-h+1))
                     for h in config.window_sizes
                    ])
        self.fc = nn.Linear(in_features=config.feature_size*len(config.window_sizes),
                            out_features=config.num_class)
        if os.path.exists(config.embedding_path) and config.is_training and config.is_pretrain:
            print("Loading pretrain embedding...")
            self.embedding.weight.data.copy_(torch.from_numpy(np.load(config.embedding_path)))    
    
    def forward(self, x):
        embed_x = self.embedding(x)
        
        #print('embed size 1',embed_x.size())  # 32*35*256
# batch_size x text_len x embedding_size  -> batch_size x embedding_size x text_len
        embed_x = embed_x.permute(0, 2, 1)
        #print('embed size 2',embed_x.size())  # 32*256*35
        out = [conv(embed_x) for conv in self.convs]  #out[i]:batch_size x feature_size*1
        #for o in out:
        #    print('o',o.size())  # 32*100*1
        out = torch.cat(out, dim=1)  # 对应第二个维度(行)拼接起来,比如说5*2*1,5*3*1的拼接变成5*5*1
        #print(out.size(1)) # 32*400*1
        out = out.view(-1, out.size(1)) 
        #print(out.size())  # 32*400 
        if not self.use_element:
            out = F.dropout(input=out, p=self.dropout_rate)
            out = self.fc(out)
        return out

  

embed_x一开始大小为32*35*256,32为batch_size。经过permute,变为32*256*35,输入到自定义的网络后,out中的每一个元素,大小为32*100*1,共有4个元素。在dim=1维度上进行拼接后,变为32*400*1,在经过view,变为32*400,最后通过400*num_class大小的全连接矩阵,变为32*2。

 

===================================================================================================================================

 

Pytorch中计算卷积方法的区别(conv2d的区别)

在二维矩阵间的运算:

class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)

  

对由多个特征平面组成的输入信号进行2D的卷积操作。

 

torch.nn.functional.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)

  

在由多个输入平面组成的输入图像上应用2D卷积,这个操作其实和上面的操作是一样的,只不过这个操作多用于计算一组卷积核对于输入的卷积结果,而上面的那条代码更多的则是用在定义网络中去。

======================================================================================================================

 

先来看二维卷积conv2d

conv2d(input, filter, strides, padding, use_cudnn_on_gpu=True, data_format="NHWC", dilations=[1, 1, 1, 1], name=None)
"""Computes a 2-D convolution given 4-D `input` and `filter` tensors."""
给定4维的输入张量和滤波器张量来进行2维的卷积计算。

input:4维张量,形状:[batch, in_height, in_width, in_channels]

filter:滤波器(卷积核),4维张量,形状:[filter_height, filter_width, in_channels, out_channels]

strides:滤波器滑动窗口在input的每一维度上,每次要滑动的步长,是一个长度为4的一维张量。

padding:边界填充算法参数,有两个值:‘SAME’、‘VALID’。具体差别体现在卷积池化后,特征图的大小变化上面。卷积池化后特征矩阵的大小计算参见https://blog.csdn.net/qq_26552071/article/details/81171161

return:该函数返回一个张量,其类型与input输入张量相同。

 

再看一维卷积conv1d,python中的一维卷积最终还是通过二维卷积实现的,先将输入张量和滤波器的维度扩展,再调用二维卷积conv2d来实现。

def conv1d(value,filters, stride, padding, use_cudnn_on_gpu=None, data_format=None, name=None)
"""Computes a 1-D convolution given 3-D input and filter tensors."""
给定三维的输入张量和滤波器来进行1维卷积计算。

input:3维张量,形状shape和data_format有关:

    (1)data_format = "NWC", shape = [batch, in_width, in_channels]

    (2)data_format = "NCW", shape = [batch, in_channels, in_width]

filters:3维张量,shape = [filter_width, in_channels, out_channels],

stride:滤波器窗口移动的步长,为一个整数。

padding:与上文一致。

由conv1d源码可以看出,一维卷积的实现,是先对输入张量和filter扩展了一维,然后调用二维卷积进行运算的:

    value = array_ops.expand_dims(value, spatial_start_dim)  # 输入张量
    filters = array_ops.expand_dims(filters, 0)  # 滤波器
    result = gen_nn_ops.conv2d(
        value,
        filters,
        strides,
        padding,
        use_cudnn_on_gpu=use_cudnn_on_gpu,
        data_format=data_format)
    return array_ops.squeeze(result, [spatial_start_dim])

  

 

下面为conv1d完整源码:

def conv1d(value,
           filters,
           stride,
           padding,
           use_cudnn_on_gpu=None,
           data_format=None,
           name=None): 
  with ops.name_scope(name, "conv1d", [value, filters]) as name:
    # Reshape the input tensor to [batch, 1, in_width, in_channels]
    if data_format is None or data_format == "NHWC" or data_format == "NWC":
      data_format = "NHWC"
      spatial_start_dim = 1
      strides = [1, 1, stride, 1]
    elif data_format == "NCHW" or data_format == "NCW":
      data_format = "NCHW"
      spatial_start_dim = 2
      strides = [1, 1, 1, stride]
    else:
      raise ValueError("data_format must be \"NWC\" or \"NCW\".")
    value = array_ops.expand_dims(value, spatial_start_dim)
    filters = array_ops.expand_dims(filters, 0)
    result = gen_nn_ops.conv2d(
        value,
        filters,
        strides,
        padding,
        use_cudnn_on_gpu=use_cudnn_on_gpu,
        data_format=data_format)
    return array_ops.squeeze(result, [spatial_start_dim])

  

 

==============================================

备忘

input     w*h

output   wo*ho

filter   F

Padding  P

stride    S

wo = (w - F + 2*P)/S +1

posted @ 2019-02-23 10:23  CrossPython  阅读(18877)  评论(0编辑  收藏  举报