Python网络编程之线程,进程

 

  

  一. 线程:

      基本使用

      线程锁

      线程池

      队列(生产者消费者模型)

  二. 进程:

       基本使用

       进程锁

                进程池

                进程数据共享

   

    三. 协程:

      gevent

      greenlet

    四. 缓存:

      memcache

      

  

  

  (一)线程:

       所有的线程都运行于一个进程中,一个进程中可以执行多个线程。多个线程共享进程内的资源。所以可以将线程可以看成是共享同一虚拟内存以及其他属性的进程。

       Threading用于提供线程相关的操作,线程是应用程序中工作的最小单元。

       Thread(target=None, name=None, args=(), kwargs={}) : 创建一个新的线程实例

target:可调用对象,线程启动时,run()将调用此对象,默认为None

name: 线程名

args: 传递给target的参数元组

kwargs: 传递给target的关键字参数字典

Thread的实例:

t.start: #线程准备就绪,等待CPU调度
t.run: #线程被cpu调度后自动执行线程对象的run方法
t.join([timeout]): #等待直到线程终止或者出现超时为止。
t.is_alive(): #如果线程是活动的。返回True,否则返回False
t.name: #线程名称
t.daemon: #线程的布尔型后台标志,必须在调用start()方法之前设置这个标志

 

###以线程的形式创建和启动一个函数:

 1 import threading
 2 import time
 3 
 4 def clock(interval):
 5     while True:
 6         print("The time is %s" % time.ctime())
 7         time.sleep(interval)
 8 
 9 t = threading.Thread(target=clock,args=(5,))
10 #t.daemon = True
11 t.start()
12 
13 The time is Sat Jul 23 02:08:58 2016
14 The time is Sat Jul 23 02:09:03 2016
15 The time is Sat Jul 23 02:09:08 2016

###将同一个线程定义为一个类:

 1 import threading
 2 import time
 3 
 4 class ClockThread(threading.Thread):
 5     def __init__(self,interval):
 6         threading.Thread.__init__(self)
 7         self.interval = interval
 8     def run(self):
 9         while True:
10             print("The time is %s" % time.ctime())
11             time.sleep(self.interval)
12 t = ClockThread(5)
13 t.start()
14 
15 
16 The time is Sat Jul 23 02:15:48 2016
17 The time is Sat Jul 23 02:15:53 2016
18 The time is Sat Jul 23 02:15:58 2016

 

  Timer对象:

      定时器,在某个时间执行某个函数

    格式: 

      Timer(interval, func [,args [, kwargs]])

    对象:

     p.start(): 启动定时器

     p.cancel(): 如果函数尚未执行,取消定时器

 1 from threading import Timer
 2  
 3  
 4 def hello():
 5     print("hello, world")
 6  
 7 t = Timer(3, hello)
 8 t.start()  #3s后执行函数显示"hello,word"
 9 
10 hello, world

  信号量与有边界的信号量(semaphore):

     互斥锁 同时只允许一个线程更改数据,而Semaphore是同时允许一定数量的线程更改数据 ,每次调用acquire()方法时此计数器减1,每次调用release()方法时此计数器加1,如果计数器为0,acquire方法将会阻塞,直到其他线程调用release方法为止。比如厕所有3个坑,那最多只允许3个人上厕所,后面的人只能等里面有人出来了才能再进去。

  Semaphore([value]) :创建一个信号量,value为初始值,省略时,默认为1

    p.acquire([blocking]):获取信号量

    p.release() :通过将内部计数器值加1来释放一个信号量。

  BoundedSemaphore([value]): 创建一个新的信号机,与Semaphore的工作方式完全相同,但是release()操作的次数不能超过acquire()操作次数

 

注: 信号机与互斥锁的差别在于:

      信号机可用于发射信号,可以从不同线程调用以上两个方法。

 1 import threading,time
 2 
 3 def run(n):
 4     semaphore.acquire()
 5     time.sleep(1)
 6     print("run the thread: %s" %n)
 7     semaphore.release()
 8 
 9 if __name__ == '__main__':
10 
11     num= 0
12     semaphore  = threading.BoundedSemaphore(5) #最多允许5个线程同时运行
13     for i in range(10):
14         t = threading.Thread(target=run,args=(i,))
15         t.start()
16 
17 
18 run the thread: 0
19 run the thread: 4
20 run the thread: 3
21 run the thread: 2
22 run the thread: 1
23 run the thread: 5
24 run the thread: 9
25 run the thread: 8
26 run the thread: 7
27 run the thread: 6

  事件(Event):

    用于在线程之间通信。一个线程发出“事件”信号,一个或多个其它线程等待,Event实例管理者一个内部标志,可以使用set()方法将它置为True,clear()置为Flase, wait()方法将阻塞直到标志位True.

    Event()

e.is_set(): 当内部标志位Ture时才返回True

e.set(): 将内部标志设置为True。等待它变为True的所有线程都将被唤醒

e.clear(): 将内部标志重置为False

e.wait([timeout]): 阻塞直到内部标志位True。

 1 import threading
 2  
 3  
 4 def do(event):
 5     print 'start'
 6     event.wait()
 7     print 'execute'
 8  
 9  
10 event_obj = threading.Event()
11 for i in range(5):
12     t = threading.Thread(target=do, args=(event_obj,))
13     t.start()
14  
15 event_obj.clear()
16 inp = raw_input('input:')
17 if inp == 'true':
18     event_obj.set()
19 
20 
21 start
22 start
23 start
24 start
25 start
26 input:true
27 execute
28 execute
29 execute
30 execute
31 execute

  条件(Condition):

    使得线程等待,只有满足某条件时,才释放n个线程

    Condition([lock]) :创建一个条件变量,lock为可选的Lock或RLock实例,为指定则创建新的RLock实例供条件变量使用。

  c.acquire(*args): 获取底层锁定

  c.release(): 释放底层锁定

  c.wait([timeout]): 等待直到获得通知或出现超时为止

  c.notify([n]) : 唤醒一个或多个等待此条件变量的线程。

  c.notify_all(): 唤醒所有等待此条件的线程。

 1 import threading
 2 
 3 def condition_func():
 4 
 5     ret = False
 6     inp = input('>>>')
 7     if inp == '1':
 8         ret = True
 9 
10     return ret
11 
12 
13 def run(n):
14     con.acquire()
15     con.wait_for(condition_func)
16     print("run the thread: %s" %n)
17     con.release()
18 
19 if __name__ == '__main__':
20 
21     con = threading.Condition()
22     for i in range(10):
23         t = threading.Thread(target=run, args=(i,))
24         t.start()
25 
26 >>>1
27 run the thread: 0
28 >>>1
29 run the thread: 1
30 >>>1
31 run the thread: 2
32 >>>1
33 run the thread: 3

  线程池:

    线程池是一个存放很多线程的单位,同时还有一个对应的任务队列。整个执行过程其实就是使用线程池中已有有限的线程把任务 队列中的任务做完。

 

 1 import queue,threading,time
 2 
 3 class ThreadPool:
 4     def __init__(self,maxsize = 5):
 5         self.maxsize = maxsize
 6         self._q = queue.Queue(maxsize)
 7         for i in range(maxsize):
 8             self._q.put(threading.Thread)
 9 
10     def get_thread(self):
11         return self._q.get()
12 
13     def add_thread(self):
14         self._q.put(threading.Thread)
15 
16 pool = ThreadPool(5)
17 
18 def task(arg, p):
19     print(arg)
20     time.sleep(1)
21     p.add_thread()
22 
23 for i in range(10):
24     #threading.Thread类
25     t = pool.get_thread()
26     obj = t(target = task, args = (i,pool))
27     obj.start()
28 
29 from threading import Timer
30 def hello():
31     print("hello,word")
32 t = Timer(3,hello)
33 t.start()
34 
35 
36 0
37 1
38 2
39 3
40 4
41 5
42 6
43 7
44 8
45 9
46 1
47 run the thread: 1
48 run the thread: 0
49 2
50 run the thread: 3
51 run the thread: 2
52 hello,word
53 3
54 run the thread: 4
55 4
56 5
57 6
58 7
59 8
60 9
61 10
View Code

  

  队列:

    队列是线程间最常用的交换数据的形式。queue模块是提供队列操作的模块,实现了各种多生产者,多使用者队列,可用于执行多个线程之间安全地交换信息。

  queue模块定义了3种不同的队列类:

    1. Queue([maxsize]):  FIFO(先进先出)队列。maxsize为可放入项目的最大量。不设置或者为0时,队列无穷大。

    2. LifoQueue([maxsize]): LIFO(后进先出)队列。也叫栈。

    3. PriorityQueue([maxsize]): 优先级队列,项目按优先级从低到高排列,格式为(priority, data)形式的元组, priority为一个数字。

 1  实例如下:
 2   
 3  1 q.qsize(): #返回队列的正确大小
 4  2 q.empty(): #如果队列为空,则返回True
 5  3 q.full():#如果队列已满,返回True
 6  4 q.put(item [, block [, timeout): #将item放入队列. block,调用者将被阻塞直到队列中有可用的空闲位置即可。
 7  5 q.put_nowait(item): #与q.put没什么差别
 8  6 q.get([block [, timeout]]):3 从队列中删除一项,然后返回这个项目
 9  7 q.get_nowait():#相当于get(0)
10 8 q.task_done(): 队列中数据的使用者用来指示对于项目的处理意见结束。
11 9 q.join(): 阻塞直到队列中的所有项目均被删除和处理为止。

案例: 

(先进先出)

 1 import queue
 2 q = queue.Queue(2)
 3 print(q.empty())
 4 q.put(11)
 5 q.put(22)
 6 print(q.empty())
 7 print(q.qsize())
 8 print(q.get())
 9 print(q.get())
10 q.put(33,block=False)
11 q.put(33,block=False,timeout=2)
12 print(q.get(timeout=2))
13 
14 q = queue.Queue(5)
15 
16 q.put(123)
17 q.put(456)
18 print(q.get())
19 q.task_done()
20 print(q.get())
21 q.task_done()
22 q.join()
1 #queue.LifoQueue, #后进先出队列
2 
3 q = queue.LifoQueue()
4 q.put(123)
5 q.put(456)
6 print(q.get())
1 # queue.PriorityQueue,优先级队列
2 
3 # q = queue.PriorityQueue()
4 # q.put((8, 'hong'))
5 # q.put((2, 345))
6 # q.put((3, 678))
7 # print(q.get())
1 # queue.deque,双向对队
2 
3 # q = queue.deque()
4 # q.append(123)
5 # q.append(333)
6 # q.appendleft(555)
7 #
8 # print(q.pop())
9 # print(q.popleft())

  生产者与消费者模型:

     生产者的工作是产生一块数据,放到buffer中,如此循环。与此同时,消费者在消耗这些数据(例如从buffer中把它们移除),每次一块。这里的关键词是“同时”。所以生产者和消费者是并发运行的,我们需要对生产者和消费者做线程分离。    

 1 import queue
 2 import threading
 3 import time
 4 q = queue.Queue()
 5 
 6 def productor(arg):
 7     """
 8     买票
 9     :param arg:
10     :return:
11     """
12     q.put(str(arg) + '- 买票')
13 
14 for i in range(20):
15     t = threading.Thread(target=productor,args=(i,))
16     t.start()

   

  (二)进程:

        进程是程序的一次执行,每个进程都有自己的地址空间,内存,数据栈。创建进程的时候,内核会为进程分配一定的资源,并在进程存活的时候不断进行调整,比如内存,进程创建的时候会占有一部分内存。进程结束的时候资源会释放出来,来让其他资源使用。我们可以把进程理解为一种容器,容器内的资源可多可少,但是只能进程间通信,不能共享信息。

               谈到进程则要用到的就是multiprocessing模块,这个模块的所有功能基本都是在进程上的。

       定义一个类运行一个进程:

       process([,target [,name [,args [,kwargs]]]])

target: 当进程启动时执行的可调用对象

name: 为进程执行描述性名称的字符串

args: 位置参数,元组

kwargs: 位置参数,字典

通过这个构造函数简单构造了一个process进程。

  进程(process)实例:

p.is_alive() #如果p仍然运行,返回True
p.join([timeout]) #等待进程p终止,timeout是可选的超时期限。进程可被连接无数次,但连接自身时则会报错
p.run()# 启动进程时运行的方法,可调用target。
p.start() #启动进程,代表进程的子进程,并调用p.run()函数
p.terminate()#强制终止进程。进程p被立即终止,而不会进行清理,慎用。

单进程实例:

import multiprocessing
import time

def clock(interval):
    while True:
        print("The time is %s" % time.ctime())
        time.sleep(interval)
if __name__ == '__main__':
    p = multiprocessing.Process(target=clock, args=(5,))
    p.start()

The time is Fri Jul 22 17:15:45 2016
The time is Fri Jul 22 17:15:50 2016
The time is Fri Jul 22 17:15:55 2016
将上面的进程定义为继承自Process的类,目的为为了实现跨平台的可移植性,必须有主程序创建进程。

 1 import multiprocessing
 2 import time
 3 
 4 class ClockProcess(multiprocessing.Process):
 5     def __init__(self, interval):
 6         multiprocessing.Process.__init__(self)
 7         self.interval = interval
 8 
 9     def run(self):
10         while True:
11             print("The time is %s" % time.ctime())
12             time.sleep(self.interval)
13 if __name__ == '__main__':
14     p = ClockProcess(5)
15     p.start()
16 
17 The time is Fri Jul 22 17:25:08 2016
18 The time is Fri Jul 22 17:25:13 2016
19 The time is Fri Jul 22 17:25:18 2016

     进程锁:

     当多个进程需要访问共享资源的时候,Lock可以用来避免访问的冲突。

 1 import multiprocessing
 2 import sys
 3 
 4 def worker_with(lock, f):
 5     with lock:
 6         fs = open(f,"a+")
 7         fs.write('Lock acquired via \n')
 8         fs.close()
 9 
10 def worker_no_with(lock, f):
11     lock.acquire()
12     try:
13         fs = open(f,"a+")
14         fs.write('Lock acquired directly\n')
15         fs.close()
16     finally:
17         lock.release()
18 
19 if __name__ == "__main__":
20 
21     f = "file.txt"
22 
23     lock = multiprocessing.Lock()
24     w = multiprocessing.Process(target=worker_with, args=(lock, f))
25     nw = multiprocessing.Process(target=worker_no_with, args=(lock, f))
26 
27     w.start()
28     nw.start()
29 
30     w.join()
31     nw.join()
32 
33 
34 #cat file.txt
35 
36 Lock acquired directly
37 Lock acquired via 

注:如果两个进程没有使用lock来同步,则他们对同一个文件的写操作可能会出现混乱。

 

  进程池:

     进程池内部维护一个进程序列,当使用时,则去进程池中获取一个进程,如果进程池序列中没有可供使用的进进程,那么程序就会等待,直到进程池中有可用进程为止。

      创建一个进程池:

        Pool([numprocess [,initializer [, initargs]]])

numprocess: 要创建的进程数

initlalizer: 每个工作进程启动时要执行的可调用对象,默认为None

initargs: 传递给initlalizer的元组

    Pool的实例:

p.apply(func, [, args [, kwargs]])#在一个池工作进程中执行函数(**args, **kwargs),然后返回结果,不能再池中并行执行,可使用apply_async
p.apply_async(func, [, args [, kwargs [,callback]]])#在一个池工作进程中异步执行函数(**args, **kwargs),然后返回结果,传递给callback。
p.terminate()#立即终止
p.close()# 关闭进程池
p.join()# 等待所有工作进程退出

案例:

 1 from multiprocessing import Pool
 2 import time
 3 
 4 def f1(arg):
 5     time.sleep(3)
 6     print(arg)
 7 
 8 if __name__ == '__main__':
 9     pool = Pool(5) #并发执行5个函数
10 
11     for i in range(15):
12         #pool.apply(func=f1,args=(i,))#不能并发的执行函数
13         pool.apply_async(func=f1,args=(i,))#可并发执行函数
14 
15     pool.close() #所有的任务执行完毕
16     time.sleep(3)
17     #pool.terminate()#立即终止
18     pool.join()

   进程数据共享:

        通常进程之间是完全孤立的,使用数据共享,可以访问多个进程。

   实现进程数据共享有两种方法:

 1 #方法一,Array
 2 
 3 from multiprocessing import Process
 4 from multiprocessing import Array
 5 
 6 def foo(i,arg):
 7     arg[i] = i + 100
 8     for item in arg:
 9         print(item)
10     print('============')
11 
12 if __name__ == '__main__':
13     li = Array('i',10)
14     for i in range(10):
15         p = Process(target=foo,args=(i,li,))
16         p.start()
 1 #方法二:manage.dict()共享数据
 2 
 3 from multiprocessing import Process
 4 from multiprocessing import Manager
 5 #
 6 def foo(i,arg):
 7     arg[i] = i + 100
 8     print(arg.values())
 9 
10 if __name__ == '__main__':
11     obj = Manager()
12     li = obj.dict()
13     for i in range(10):
14         p = Process(target=foo,args=(i,li,))
15         p.start()
16     import time
17     time.sleep(1)

  线程锁(Lock, RLock):

    由于线程之间是进行随机调度,并且每个线程可能只执行n条执行之后,当多个线程同时修改同一条数据时可能会出现脏数据,所以,出现了线程锁 - 同一时刻允许一个线程执行操作。

    Lock():创建新的Lock对象,初始化状态为非锁定

    lock.acquire([blocking]): 获取锁定

    lock.release(): 释放锁定

 1 import threading,time
 2 
 3 def run(n):
 4     semaphore.acquire()
 5     time.sleep(1)
 6     print("run the thread: %s" %n)
 7     semaphore.release()
 8 
 9 if __name__ == '__main__':
10 
11     num= 0
12     semaphore  = threading.BoundedSemaphore(2) #最多允许5个线程同时运行
13     for i in range(5):
14         t = threading.Thread(target=run,args=(i,))
15         t.start()
16 
17 
18 1
19 run the thread: 1
20 run the thread: 0
21 2
22 run the thread: 3
23 run the thread: 2
24 3
25 run the thread: 4
26 4
27 5
28 6
29 7
30 8
31 9
32 10

 

  (三)协程:

       协程我们可以看成是一种用户空间的线程,利用一个线程,分解一个线程成为多个“微线程”  

        Python通过yield提供了对协程的基本支持,但是不完全。而第三方的gevent为Python提供了比较完善的协程支持。

        gevent是第三方库,通过greenlet实现协程,其基本思想是:  

         当一个greenlet遇到IO操作时,比如访问网络,就自动切换到其他的greenlet,等到IO操作完成,再在适当的时候切换回来继续执行。由于IO操作非常耗时,经常使程序处于等待状态,有了gevent为我们自动切换协程,就保证总有greenlet在运行,而不是等待IO。

由于切换是在IO操作时自动完成,所以gevent需要修改Python自带的一些标准库,这一过程在启动时通过monkey patch完成:

 1 from gevent import monkey; monkey.patch_socket()
 2 import gevent
 3 
 4 def f(n):
 5     for i in range(n):
 6         print gevent.getcurrent(), i
 7 
 8 g1 = gevent.spawn(f, 5)
 9 g2 = gevent.spawn(f, 5)
10 g3 = gevent.spawn(f, 5)
11 g1.join()
12 g2.join()
13 g3.join()
14 
15 
16 <Greenlet at 0x10e49f550: f(5)> 0
17 <Greenlet at 0x10e49f550: f(5)> 1
18 <Greenlet at 0x10e49f550: f(5)> 2
19 <Greenlet at 0x10e49f550: f(5)> 3
20 <Greenlet at 0x10e49f550: f(5)> 4
21 <Greenlet at 0x10e49f910: f(5)> 0
22 <Greenlet at 0x10e49f910: f(5)> 1
23 <Greenlet at 0x10e49f910: f(5)> 2
24 <Greenlet at 0x10e49f910: f(5)> 3
25 <Greenlet at 0x10e49f910: f(5)> 4
26 <Greenlet at 0x10e49f4b0: f(5)> 0
27 <Greenlet at 0x10e49f4b0: f(5)> 1
28 <Greenlet at 0x10e49f4b0: f(5)> 2
29 <Greenlet at 0x10e49f4b0: f(5)> 3
30 <Greenlet at 0x10e49f4b0: f(5)> 4

可以看到,3个greenlet是依次运行而不是交替运行。

要让greenlet交替运行,可以通过gevent.sleep()交出控制权:

def f(n):
    for i in range(n):
        print gevent.getcurrent(), i
        gevent.sleep(0)


<Greenlet at 0x10cd58550: f(5)> 0
<Greenlet at 0x10cd58910: f(5)> 0
<Greenlet at 0x10cd584b0: f(5)> 0
<Greenlet at 0x10cd58550: f(5)> 1
<Greenlet at 0x10cd584b0: f(5)> 1
<Greenlet at 0x10cd58910: f(5)> 1
<Greenlet at 0x10cd58550: f(5)> 2
<Greenlet at 0x10cd58910: f(5)> 2
<Greenlet at 0x10cd584b0: f(5)> 2
<Greenlet at 0x10cd58550: f(5)> 3
<Greenlet at 0x10cd584b0: f(5)> 3
<Greenlet at 0x10cd58910: f(5)> 3
<Greenlet at 0x10cd58550: f(5)> 4
<Greenlet at 0x10cd58910: f(5)> 4
<Greenlet at 0x10cd584b0: f(5)> 4

3个greenlet交替运行,

把循环次数改为500000,让它们的运行时间长一点,然后在操作系统的进程管理器中看,线程数只有1个。

当然,实际代码里,我们不会用gevent.sleep()去切换协程,而是在执行到IO操作时,gevent自动切换,代码如下:

 1 from gevent import monkey; monkey.patch_all()
 2 import gevent
 3 import urllib2
 4 
 5 def f(url):
 6     print('GET: %s' % url)
 7     resp = urllib2.urlopen(url)
 8     data = resp.read()
 9     print('%d bytes received from %s.' % (len(data), url))
10 
11 gevent.joinall([
12         gevent.spawn(f, 'https://www.python.org/'),
13         gevent.spawn(f, 'https://www.yahoo.com/'),
14         gevent.spawn(f, 'https://github.com/'),
15 ])
16 
17 
18 GET: https://www.python.org/
19 GET: https://www.yahoo.com/
20 GET: https://github.com/
21 45661 bytes received from https://www.python.org/.
22 14823 bytes received from https://github.com/.
23 304034 bytes received from https://www.yahoo.com/.

从结果看,3个网络操作是并发执行的,而且结束顺序不同,但只有一个线程。

 

  (四)缓存

      memcache:

        下载: wget http://ftp.tummy.com/pub/python-memcached/old-releases/python-memcached-1.54.tar.gz(自己更新最新版)

        解压缩:tar -zxvf python-memcached-1.54.tar.gz

        安装: python setup.py install

        启动:memcached --10    -u root -l 127.0.0.1  -p 11511 -256 -/tmp/memcached.pid

 
参数说明:
    -d 是启动一个守护进程
    -m 是分配给Memcache使用的内存数量,单位是MB
    -u 是运行Memcache的用户
    -l 是监听的服务器IP地址
    -p 是设置Memcache监听的端口,最好是1024以上的端口
    -c 选项是最大运行的并发连接数,默认是1024,按照你服务器的负载量来设定
    -P 是设置保存Memcache的pid文件

代码:

import memcache

class MemcachedClient():
    ''' python memcached 客户端操作示例 '''

    def __init__(self, hostList):
        self.__mc = memcache.Client(hostList);

    def set(self, key, value):
        result = self.__mc.set("name", "hongfei")
        return result

    def get(self, key):
        name = self.__mc.get("name")
        return name

    def delete(self, key):
        result = self.__mc.delete("name")
        return result

if __name__ == '__main__':
    mc = MemcachedClient(["127.0.0.1:11511", "127.0.0.1:11512"])
    key = "name"
    result = mc.set(key, "hongfei")
    print("set的结果:", result)
    name = mc.get(key)
    print ("get的结果:", name)
    result = mc.delete(key)
    print ("delete的结果:", result)

set的结果: True
get的结果: hongfei
delete的结果: 1

 

 很抱歉,时间有点仓促,写的不是很细,有点乱,以后慢慢补充整理,谢谢查看。 

 

posted @ 2016-07-22 18:37  浮光掠影转瞬间  阅读(289)  评论(0编辑  收藏  举报