python3的C3算法

一、基本概念

1. mro序列

MRO是一个有序列表L,在类被创建时就计算出来。

通用计算公式为:

mro(Child(Base1,Base2)) = [ Child ] + merge( mro(Base1), mro(Base2),  [ Base1, Base2] )
(其中Child继承自Base1, Base2)

如果继承至一个基类:class B(A) 
这时B的mro序列为

mro( B ) = mro( B(A) )
= [B] + merge( mro(A) + [A] )
= [B] + merge( [A] + [A] )
= [B,A]

如果继承至多个基类:class B(A1, A2, A3 …) 
这时B的mro序列

mro(B)  = mro( B(A1, A2, A3 …) )
= [B] + merge( mro(A1), mro(A2), mro(A3) ..., [A1, A2, A3] )
= ...

计算结果为列表,列表中至少有一个元素即类自己,如上述示例[A1,A2,A3]。merge操作是C3算法的核心。

2. 表头和表尾:

表头: 列表的第一个元素

表尾: 列表中表头以外的元素集合(可以为空)

示例 
列表:[A, B, C] 
表头是A,表尾是B和C

3. 列表之间的+操作

+操作:

[A] + [B] = [A, B]
(以下的计算中默认省略)

3. merge操作:

merge操作流程图: 

merge操作示例:

如计算merge( [E,O], [C,E,F,O], [C] )
有三个列表 :  ①      ②          ③

1 merge不为空,取出第一个列表列表①的表头E,进行判断                              
   各个列表的表尾分别是[O], [E,F,O],E在这些表尾的集合中,因而跳过当前当前列表
2 取出列表②的表头C,进行判断
   C不在各个列表的集合中,因而将C拿出到merge外,并从所有表头删除
   merge( [E,O], [C,E,F,O], [C]) = [C] + merge( [E,O], [E,F,O] )
3 进行下一次新的merge操作 ......

二、实例

1. 计算实例1

示例:(多继承UML图,引用见参考) 
多继承UML图: 
备注:O==object

如何计算mro(A) ?

mro(A) = mro( A(B,C) )

原式= [A] + merge( mro(B),mro(C),[B,C] )

  mro(B) = mro( B(D,E) )
         = [B] + merge( mro(D), mro(E), [D,E] )  # 多继承
         = [B] + merge( [D,O] , [E,O] , [D,E] )  # 单继承mro(D(O))=[D,O]
         = [B,D] + merge( [O] , [E,O]  ,  [E] )  # 拿出并删除D
         = [B,D,E] + merge([O] ,  [O])
         = [B,D,E,O]

  mro(C) = mro( C(E,F) )
         = [C] + merge( mro(E), mro(F), [E,F] )
         = [C] + merge( [E,O] , [F,O] , [E,F] )
         = [C,E] + merge( [O] , [F,O]  ,  [F] )  # 跳过O,拿出并删除
         = [C,E,F] + merge([O] ,  [O])
         = [C,E,F,O]

原式= [A] + merge( [B,D,E,O], [C,E,F,O], [B,C])
    = [A,B] + merge( [D,E,O], [C,E,F,O],   [C])
    = [A,B,D] + merge( [E,O], [C,E,F,O],   [C])  # 跳过E
    = [A,B,D,C] + merge([E,O],  [E,F,O])
    = [A,B,D,C,E] + merge([O],    [F,O])  # 跳过O
    = [A,B,D,C,E,F] + merge([O],    [O])
    = [A,B,D,C,E,F,O]

2. 实例代码测试

对于以上计算,用代码来测试。

class D: pass
class E: pass
class F: pass
class B(D,E): pass
class C(E,F): pass
class A(B,C): pass

print("从A开始查找:")
for s in A.__mro__:
    print(s)

print("从B开始查找:")
for s in B.__mro__:
    print(s)

print("从C开始查找:")
for s in C.__mro__:
    print(s)

结果:

从A开始查找:
<class '__main__.A'>
<class '__main__.B'>
<class '__main__.D'>
<class '__main__.C'>
<class '__main__.E'>
<class '__main__.F'>
<class 'object'>
从B开始查找:
<class '__main__.B'>
<class '__main__.D'>
<class '__main__.E'>
<class 'object'>
从C开始查找:
<class '__main__.C'>
<class '__main__.E'>
<class '__main__.F'>
<class 'object'>

三、总结
每次判断如何读取都要这么麻烦计算吗?可有简单方法?
我对此做了一个简单总结。

1. 规律总结
如何快速判断查找规律?

从 “当前子类” 向上查找它的父类,
若 “当前子类” 不是 “查找的父类” 的最后一个继承的子类时,则跳过该 “查找的父类” 的查找,开始查找 “当前子类” 的下一个父类
查找规律流程图:

 

 

 

 

2. 规律测试

实例2:

对于如下继承: 
这里写图片描述

通过如下判断模式:

代码测试:

class A1: pass
class A2: pass
class A3: pass
class B1(A1,A2): pass
class B2(A2): pass
class B3(A2,A3): pass
class C1(B1): pass
class C2(B1,B2): pass
class C3(B2,B3): pass
class D(C1, C2, C3): pass

print("从D开始查找:")
for s in D.__mro__:
    print(s)

print("从C3开始查找:")
for s in C3.__mro__:
    print(s)

结果:

从D开始查找:
<class '__main__.D'>
<class '__main__.C1'>
<class '__main__.C2'>
<class '__main__.B1'>
<class '__main__.A1'>
<class '__main__.C3'>
<class '__main__.B2'>
<class '__main__.B3'>
<class '__main__.A2'>
<class '__main__.A3'>
<class 'object'>
从C3开始查找:
<class '__main__.C3'>
<class '__main__.B2'>
<class '__main__.B3'>
<class '__main__.A2'>
<class '__main__.A3'>
<class 'object'>

 

  

  

  

  

posted @ 2019-02-16 21:24  Mr·Yuan  阅读(994)  评论(0编辑  收藏  举报