ss
import pandas as pd train_pd = pd.read_csv("train.csv") # print(train_pd) select_pd = train_pd.loc[:,['Sold Price', 'Listed Price']] select_pd = select_pd.iloc[:1000, :] print(select_pd) import matplotlib.pyplot as plt import seaborn as sns plt.figure(figsize=(20,20)) axes = sns.scatterplot(data=select_pd, x='Sold Price', y='Listed Price') # for i in range(select_pd.shape[0]): # if select_pd.at[i, 'Listed Price'] > 0.5: # axes.text(select_pd.at[i, 'Sold Price']+0.02, select_pd.at[i, 'Listed Price'], i, horizontalalignment='left', size='medium', color='black', weight='semibold') plt.show()