Linux perf 1.4、hardware events

可以通过perf list命令来查看系统中的hardware event:

# simpleperf list hw
List of hardware events:
  cpu-cycles
  instructions
  cache-references
  cache-misses
  branch-misses

还有hardware-cache event:

# simpleperf list cache
List of hw-cache events:
  L1-dcache-loads
  L1-dcache-load-misses
  L1-dcache-stores
  L1-dcache-store-misses
  branch-loads
  branch-load-misses
  branch-stores
  branch-store-misses

1、原理介绍:

1.1、hardware pmu

PMU(Performance Monitor Unit)本来指的就是硬件上的性能监控计数器(counter)。因为软件trace方法存在制约制约:1、软件大部分是插桩法,对于没有插桩的地方缺乏监控;2、软件使用hrtimer的采样法开销较大,而且不精确。所以使用硬件采样来trace是一个很好的补充。

可以看到arm64的hardware pmu可以监控:cpu-cycles、instructions、cache-references、cache-misses、branch-misses、cache相关事件等等。它的监控原理比较简单:每个cpu有几个counter,counter 0固定只能配置成cpu-cycles,其他counter可以配置成支持的任意类型。当counter的计数达到我们配置的值后,产生中断,在中断中记录当前的pc等现场信息(sample数据)和累加counter计数(count数据)。

这里写图片描述

我们可以利用pmu来做以下分析,例如:

  • 使用“instructions”每1000 instr采样一次,统计采样pc出现概率最大的函数,这样能找到当前的计算热点;
  • 使用“cache-misses”每10 miss采样一次,统计排序,找出“cache-misses”的热点;

arm64v3每个cpu支持7个counter,counter可配置的类型如下:

  • hw event。arm64支持的类型:
/* PMUv3 HW events mapping. */
const unsigned armv8_pmuv3_perf_map[PERF_COUNT_HW_MAX] = {
    PERF_MAP_ALL_UNSUPPORTED,
    [PERF_COUNT_HW_CPU_CYCLES]      = ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES,
    [PERF_COUNT_HW_INSTRUCTIONS]        = ARMV8_PMUV3_PERFCTR_INSTR_EXECUTED,
    [PERF_COUNT_HW_CACHE_REFERENCES]    = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
    [PERF_COUNT_HW_CACHE_MISSES]        = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
    [PERF_COUNT_HW_BRANCH_MISSES]       = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
};

arm hw event的全集:

/*
 * Generalized performance event event_id types, used by the
 * attr.event_id parameter of the sys_perf_event_open()
 * syscall:
 */
enum perf_hw_id {
    /*
     * Common hardware events, generalized by the kernel:
     */
    PERF_COUNT_HW_CPU_CYCLES        = 0,
    PERF_COUNT_HW_INSTRUCTIONS      = 1,
    PERF_COUNT_HW_CACHE_REFERENCES      = 2,
    PERF_COUNT_HW_CACHE_MISSES      = 3,
    PERF_COUNT_HW_BRANCH_INSTRUCTIONS   = 4,
    PERF_COUNT_HW_BRANCH_MISSES     = 5,
    PERF_COUNT_HW_BUS_CYCLES        = 6,
    PERF_COUNT_HW_STALLED_CYCLES_FRONTEND   = 7,
    PERF_COUNT_HW_STALLED_CYCLES_BACKEND    = 8,
    PERF_COUNT_HW_REF_CPU_CYCLES        = 9,

    PERF_COUNT_HW_MAX,          /* non-ABI */
};
  • hw-cache event。三维数组,arm64支持的类型:
const unsigned armv8_pmuv3_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
                        [PERF_COUNT_HW_CACHE_OP_MAX]
                        [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
    PERF_CACHE_MAP_ALL_UNSUPPORTED,

    [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]  = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
    [C(L1D)][C(OP_READ)][C(RESULT_MISS)]    = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
    [C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
    [C(L1D)][C(OP_WRITE)][C(RESULT_MISS)]   = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,

    [C(BPU)][C(OP_READ)][C(RESULT_ACCESS)]  = ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED,
    [C(BPU)][C(OP_READ)][C(RESULT_MISS)]    = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
    [C(BPU)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED,
    [C(BPU)][C(OP_WRITE)][C(RESULT_MISS)]   = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
};

arm hw-cache event的全集三维数组:

/*
 * Generalized hardware cache events:
 *
 *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
 *       { read, write, prefetch } x
 *       { accesses, misses }
 */
enum perf_hw_cache_id {
    PERF_COUNT_HW_CACHE_L1D         = 0,
    PERF_COUNT_HW_CACHE_L1I         = 1,
    PERF_COUNT_HW_CACHE_LL          = 2,
    PERF_COUNT_HW_CACHE_DTLB        = 3,
    PERF_COUNT_HW_CACHE_ITLB        = 4,
    PERF_COUNT_HW_CACHE_BPU         = 5,
    PERF_COUNT_HW_CACHE_NODE        = 6,

    PERF_COUNT_HW_CACHE_MAX,        /* non-ABI */
};

enum perf_hw_cache_op_id {
    PERF_COUNT_HW_CACHE_OP_READ     = 0,
    PERF_COUNT_HW_CACHE_OP_WRITE        = 1,
    PERF_COUNT_HW_CACHE_OP_PREFETCH     = 2,

    PERF_COUNT_HW_CACHE_OP_MAX,     /* non-ABI */
};

enum perf_hw_cache_op_result_id {
    PERF_COUNT_HW_CACHE_RESULT_ACCESS   = 0,
    PERF_COUNT_HW_CACHE_RESULT_MISS     = 1,

    PERF_COUNT_HW_CACHE_RESULT_MAX,     /* non-ABI */
};

x86系列pmu支持的监控类型更加丰富。

1.2、pmu init

在dts文件中定义了pmu的类型:

    cpu_pmu: cpu-pmu {
        compatible = "arm,armv8-pmuv3";
        qcom,irq-is-percpu;
        interrupts = <1 6 4>;
    };

对应的驱动在drivers/perf/perf_event_armv8.c:

static const struct of_device_id armv8_pmu_of_device_ids[] = {
    {.compatible = "arm,armv8-pmuv3",   .data = armv8_pmuv3_init},
    {.compatible = "arm,cortex-a53-pmu",    .data = armv8_a53_pmu_init},
    {.compatible = "arm,cortex-a57-pmu",    .data = armv8_a57_pmu_init},
#ifdef CONFIG_ARCH_MSM8996
    {.compatible = "qcom,kryo-pmuv3", .data = kryo_pmu_init},
#endif
    {},
};

static struct platform_driver armv8_pmu_driver = {
    .driver     = {
        .name   = "armv8-pmu",
        .of_match_table = armv8_pmu_of_device_ids,
    },
    .probe      = armv8_pmu_device_probe,
};

我们分析它的初始化函数armv8_pmu_device_probe():

static int armv8_pmu_device_probe(struct platform_device *pdev)
{
    return arm_pmu_device_probe(pdev, armv8_pmu_of_device_ids, NULL);
}

↓

int arm_pmu_device_probe(struct platform_device *pdev,
             const struct of_device_id *of_table,
             const struct pmu_probe_info *probe_table)
{
    const struct of_device_id *of_id;
    const int (*init_fn)(struct arm_pmu *);
    struct device_node *node = pdev->dev.of_node;
    struct arm_pmu *pmu;
    int ret = -ENODEV;

    /* (1) 初始化arm_pmu结构,其中arm_pmu->pmu成员是标准的pmu结构 */
    pmu = kzalloc(sizeof(struct arm_pmu), GFP_KERNEL);
    if (!pmu) {
        pr_info("failed to allocate PMU device!\n");
        return -ENOMEM;
    }

    /* (2) 初始化标准pmu结构:arm_pmu->pmu */
    armpmu_init(pmu);

    if (!__oprofile_cpu_pmu)
        __oprofile_cpu_pmu = pmu;

    pmu->plat_device = pdev;

    /* (3) arm_pmu通用部分的初始化 */
    ret = cpu_pmu_init(pmu);
    if (ret)
        goto out_free;

    /* (4) arm_pmu自定义部分的初始化, 
        "arm,armv8-pmuv3",对应init_fn = armv8_pmuv3_init
     */
    if (node && (of_id = of_match_node(of_table, pdev->dev.of_node))) {
        init_fn = of_id->data;

        pmu->secure_access = of_property_read_bool(pdev->dev.of_node,
                               "secure-reg-access");

        /* arm64 systems boot only as non-secure */
        if (IS_ENABLED(CONFIG_ARM64) && pmu->secure_access) {
            pr_warn("ignoring \"secure-reg-access\" property for arm64\n");
            pmu->secure_access = false;
        }

        ret = of_pmu_irq_cfg(pmu);
        if (!ret)
            ret = init_fn(pmu);
    } else {
        ret = probe_current_pmu(pmu, probe_table);
        cpumask_setall(&pmu->supported_cpus);
    }

    if (ret) {
        pr_info("%s: failed to probe PMU!\n", of_node_full_name(node));
        goto out_destroy;
    }

    /* (5) 注册标准的pmu */
    ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
    if (ret)
        goto out_destroy;

    pmu->pmu_state  = ARM_PMU_STATE_OFF;
    pmu->percpu_irq = -1;

    pr_info("enabled with %s PMU driver, %d counters available\n",
            pmu->name, pmu->num_events);

    return 0;

out_destroy:
    cpu_pmu_destroy(pmu);
out_free:
    pr_info("%s: failed to register PMU devices!\n",
        of_node_full_name(node));
    kfree(pmu);
    return ret;
}

armpmu_init()初始化标准pmu结构:

static void armpmu_init(struct arm_pmu *armpmu)
{
    atomic_set(&armpmu->active_events, 0);
    mutex_init(&armpmu->reserve_mutex);

    /* (2.1) 标准pmu的初始赋值 */
    armpmu->pmu = (struct pmu) {
        .pmu_enable = armpmu_enable,
        .pmu_disable    = armpmu_disable,
        .event_init = armpmu_event_init,
        .add        = armpmu_add,
        .del        = armpmu_del,
        .start      = armpmu_start,
        .stop       = armpmu_stop,
        .read       = armpmu_read,
        .filter_match   = armpmu_filter_match,
        .events_across_hotplug = 1,
    };
}

cpu_pmu_init()初始化arm_pmu结构的通用部分:

static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
{
    int err;
    int cpu;
    struct pmu_hw_events __percpu *cpu_hw_events;

    /* (3.1) 分配per_cpu的pmu_hw_events结构
        hw pmu在每个cpu上有7个hw counter, 
        pmu_hw_events->used_mask中的每个bit代表对于counter是否被使用
        cpu_hw_events->events[]代表被使用counter对应的perf_event结构
     */
    cpu_hw_events = alloc_percpu(struct pmu_hw_events);
    if (!cpu_hw_events)
        return -ENOMEM;

    /* (3.2) 注册arm_pmu对应的cpu hotplug回调 */
    cpu_pmu->hotplug_nb.notifier_call = cpu_pmu_notify;
    err = register_cpu_notifier(&cpu_pmu->hotplug_nb);
    if (err)
        goto out_hw_events;

    /* (3.3) 注册arm_pmu对应的pm回调 */
    err = cpu_pm_pmu_register(cpu_pmu);
    if (err)
        goto out_unregister;

    /* (3.4) 初始化分配的pmu_hw_events结构 */
    for_each_possible_cpu(cpu) {
        struct pmu_hw_events *events = per_cpu_ptr(cpu_hw_events, cpu);
        raw_spin_lock_init(&events->pmu_lock);
        events->percpu_pmu = cpu_pmu;
    }

    /* (3.5) 初始化arm_pmu的部分成员 */
    cpu_pmu->hw_events  = cpu_hw_events;
    cpu_pmu->request_irq    = cpu_pmu_request_irq;
    cpu_pmu->free_irq   = cpu_pmu_free_irq;

    /* Ensure the PMU has sane values out of reset. */
    /* (3.6) 如果可能reset到确定值 */
    if (cpu_pmu->reset)
        on_each_cpu_mask(&cpu_pmu->supported_cpus, cpu_pmu->reset,
             cpu_pmu, 1);

    /* If no interrupts available, set the corresponding capability flag */
    /* (3.7) 如果没有中断能力,不能上报sample数据 */
    if (!platform_get_irq(cpu_pmu->plat_device, 0))
        cpu_pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;

    return 0;

out_unregister:
    unregister_cpu_notifier(&cpu_pmu->hotplug_nb);
out_hw_events:
    free_percpu(cpu_hw_events);
    return err;
}

armv8_pmuv3_init()初始化arm_pmu结构的架构(arm64)相关部分:

static int armv8_pmuv3_init(struct arm_pmu *cpu_pmu)
{
    /* (4.1) arm_pmu结构中架构相关的成员赋值 */
    armv8_pmu_init(cpu_pmu);
    cpu_pmu->name           = "armv8_pmuv3";
    cpu_pmu->map_event      = armv8_pmuv3_map_event;

    /* (4.2) 重要:
        返回pmu可配置counter的个数
     */
    return armv8pmu_probe_num_events(cpu_pmu);
}

|void armv8_pmu_init(struct arm_pmu *cpu_pmu)
{
    cpu_pmu->handle_irq     = armv8pmu_handle_irq,
    cpu_pmu->enable         = armv8pmu_enable_event,
    cpu_pmu->disable        = armv8pmu_disable_event,
    cpu_pmu->read_counter       = armv8pmu_read_counter,
    cpu_pmu->write_counter      = armv8pmu_write_counter,
    cpu_pmu->get_event_idx      = armv8pmu_get_event_idx,
    cpu_pmu->start          = armv8pmu_start,
    cpu_pmu->stop           = armv8pmu_stop,
    cpu_pmu->reset          = armv8pmu_reset,
    cpu_pmu->max_period     = (1LLU << 32) - 1,
    cpu_pmu->set_event_filter   = armv8pmu_set_event_filter;
}

|→

int armv8pmu_probe_num_events(struct arm_pmu *arm_pmu)
{
    int ret;
    struct arm_pmu_and_idle_nb *pmu_idle_nb;

    pmu_idle_nb = devm_kzalloc(&arm_pmu->plat_device->dev,
                    sizeof(*pmu_idle_nb), GFP_KERNEL);
    if (!pmu_idle_nb)
        return -ENOMEM;

    pmu_idle_nb->cpu_pmu = arm_pmu;
    pmu_idle_nb->perf_cpu_idle_nb.notifier_call = perf_cpu_idle_notifier;
    idle_notifier_register(&pmu_idle_nb->perf_cpu_idle_nb);

    ret = smp_call_function_any(&arm_pmu->supported_cpus,
                    armv8pmu_read_num_pmnc_events,
                    &arm_pmu->num_events, 1);
    if (ret)
        idle_notifier_unregister(&pmu_idle_nb->perf_cpu_idle_nb);
    return ret;


}

||→

static void armv8pmu_read_num_pmnc_events(void *info)
{
    int *nb_cnt = info;

    /* (4.2.1) 读寄存器,返回counter的个数 */
    /* Read the nb of CNTx counters supported from PMNC */
    *nb_cnt = (armv8pmu_pmcr_read() >> ARMV8_PMCR_N_SHIFT) & ARMV8_PMCR_N_MASK;

    /* (4.2.2) counter 0,固定为cpu cycles counter */
    /* Add the CPU cycles counter */
    *nb_cnt += 1;
}

2、event init

我们深入来看看标准pmu的event init函数:

static void armpmu_init(struct arm_pmu *armpmu)
{
    atomic_set(&armpmu->active_events, 0);
    mutex_init(&armpmu->reserve_mutex);

    armpmu->pmu = (struct pmu) {
        .pmu_enable = armpmu_enable,
        .pmu_disable    = armpmu_disable,
        .event_init = armpmu_event_init,
        .add        = armpmu_add,
        .del        = armpmu_del,
        .start      = armpmu_start,
        .stop       = armpmu_stop,
        .read       = armpmu_read,
        .filter_match   = armpmu_filter_match,
        .events_across_hotplug = 1,
    };
}

↓

static int armpmu_event_init(struct perf_event *event)
{
    struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
    int err = 0;
    atomic_t *active_events = &armpmu->active_events;

    /*
     * Reject CPU-affine events for CPUs that are of a different class to
     * that which this PMU handles. Process-following events (where
     * event->cpu == -1) can be migrated between CPUs, and thus we have to
     * reject them later (in armpmu_add) if they're scheduled on a
     * different class of CPU.
     */
    /* (1) 判断event所绑定的cpu是否支持 */
    if (event->cpu != -1 &&
        !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
        return -ENOENT;

    /* does not support taken branch sampling */
    if (has_branch_stack(event))
        return -EOPNOTSUPP;

    /* (2) 将event的type + config,映射成:PERF_TYPE_HARDWARE/PERF_TYPE_HW_CACHE/PERF_TYPE_RAW 
        调用的是armv8_pmuv3_map_event()函数
     */
    if (armpmu->map_event(event) == -ENOENT)
        return -ENOENT;

    event->destroy = hw_perf_event_destroy;

    /* (3) 如果是event第一次绑定pmu,需要做一些初始化动作:
        比如注册中断
     */
    if (!atomic_inc_not_zero(active_events)) {
        mutex_lock(&armpmu->reserve_mutex);
        if (atomic_read(active_events) == 0)
            err = armpmu_reserve_hardware(armpmu);

        if (!err)
            atomic_inc(active_events);
        mutex_unlock(&armpmu->reserve_mutex);
    }

    if (err)
        return err;

    /* (4) perf_event的一些初始化 */
    err = __hw_perf_event_init(event);
    if (err)
        hw_perf_event_destroy(event);

    return err;
}

|→

static int armv8_pmuv3_map_event(struct perf_event *event)
{
    return armpmu_map_event(event, &armv8_pmuv3_perf_map,
                &armv8_pmuv3_perf_cache_map,
                ARMV8_EVTYPE_EVENT);
}

||→

int
armpmu_map_event(struct perf_event *event,
         const unsigned (*event_map)[PERF_COUNT_HW_MAX],
         const unsigned (*cache_map)
                [PERF_COUNT_HW_CACHE_MAX]
                [PERF_COUNT_HW_CACHE_OP_MAX]
                [PERF_COUNT_HW_CACHE_RESULT_MAX],
         u32 raw_event_mask)
{
    u64 config = event->attr.config;
    int type = event->attr.type;

    /* (2.1) hardware pmu在perf_pmu_register()注册的时候,type=-1,所有它的type是动态分配的
        如果event的type = 动态分配的type,那么config就是raw类型的,不用映射,直接指定hardware counter的type
     */
    if (type == event->pmu->type)
        return armpmu_map_raw_event(raw_event_mask, config);

    switch (type) {

    /* (2.2) HARDWARE type,对config进行映射转换 */
    case PERF_TYPE_HARDWARE:
        return armpmu_map_hw_event(event_map, config);

    /* (2.3) HW_CACHE type,对config进行映射转换 */
    case PERF_TYPE_HW_CACHE:
        return armpmu_map_cache_event(cache_map, config);

    /* (2.4) RAW type,对config进行映射转换 */
    case PERF_TYPE_RAW:
        return armpmu_map_raw_event(raw_event_mask, config);
    }

    return -ENOENT;
}

|→

static int
armpmu_reserve_hardware(struct arm_pmu *armpmu)
{
    /* (3.1) 实际调用的是cpu_pmu_request_irq()函数 */
    int err = armpmu->request_irq(armpmu, armpmu_dispatch_irq);
    if (err) {
        armpmu_release_hardware(armpmu);
        return err;
    }

    armpmu->pmu_state = ARM_PMU_STATE_RUNNING;

    return 0;
}

||→

static int cpu_pmu_request_irq(struct arm_pmu *cpu_pmu, irq_handler_t handler)
{
    int i, err, irq, irqs;
    struct platform_device *pmu_device = cpu_pmu->plat_device;
    struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;

    if (!pmu_device)
        return -ENODEV;

    /* (3.1.1) pmu支持中断的个数 */
    irqs = min(pmu_device->num_resources, num_possible_cpus());
    if (irqs < 1) {
        pr_warn_once("perf/ARM: No irqs for PMU defined, sampling events not supported\n");
        return 0;
    }

    /* (3.1.2) 如果是per_cpu中断,从dts获得中断号并注册 */
    irq = platform_get_irq(pmu_device, 0);
    if (irq > 0 && irq_is_percpu(irq)) {
        err = request_percpu_irq(irq, handler, "arm-pmu",
                     &hw_events->percpu_pmu);
        if (err) {
            pr_err("unable to request IRQ%d for ARM PMU counters\n",
                irq);
            return err;
        }
        on_each_cpu(cpu_pmu_enable_percpu_irq, &irq, 1);
        cpu_pmu->percpu_irq = irq;
    /* (3.1.3) 如果不是per_cpu中断,逐个从dts获得中断号并注册 */
    } else {
        for (i = 0; i < irqs; ++i) {
            int cpu = i;

            err = 0;
            irq = platform_get_irq(pmu_device, i);
            if (irq < 0)
                continue;

            if (cpu_pmu->irq_affinity)
                cpu = cpu_pmu->irq_affinity[i];

            /*
             * If we have a single PMU interrupt that we can't shift,
             * assume that we're running on a uniprocessor machine and
             * continue. Otherwise, continue without this interrupt.
             */
            if (irq_set_affinity(irq, cpumask_of(cpu)) && irqs > 1) {
                pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
                    irq, cpu);
                continue;
            }

            err = request_irq(irq, handler,
                      IRQF_NOBALANCING | IRQF_NO_THREAD, "arm-pmu",
                      per_cpu_ptr(&hw_events->percpu_pmu, cpu));
            if (err) {
                pr_err("unable to request IRQ%d for ARM PMU counters\n",
                    irq);
                return err;
            }

            cpumask_set_cpu(cpu, &cpu_pmu->active_irqs);
        }
    }

    return 0;
}

|→

static int
__hw_perf_event_init(struct perf_event *event)
{
    struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
    struct hw_perf_event *hwc = &event->hw;
    int mapping;

    /* (4.1) 再次调用映射转换,把config转换成counter的type 
        并且存储到hwc->config_base变量中
     */
    mapping = armpmu->map_event(event);

    if (mapping < 0) {
        pr_debug("event %x:%llx not supported\n", event->attr.type,
             event->attr.config);
        return mapping;
    }

    /*
     * We don't assign an index until we actually place the event onto
     * hardware. Use -1 to signify that we haven't decided where to put it
     * yet. For SMP systems, each core has it's own PMU so we can't do any
     * clever allocation or constraints checking at this point.
     */
    hwc->idx        = -1;
    hwc->config_base    = 0;
    hwc->config     = 0;
    hwc->event_base     = 0;

    /*
     * Check whether we need to exclude the counter from certain modes.
     */
    if ((!armpmu->set_event_filter ||
         armpmu->set_event_filter(hwc, &event->attr)) &&
         event_requires_mode_exclusion(&event->attr)) {
        pr_debug("ARM performance counters do not support "
             "mode exclusion\n");
        return -EOPNOTSUPP;
    }

    /*
     * Store the event encoding into the config_base field.
     */
    hwc->config_base        |= (unsigned long)mapping;

    /* (4.2) 如果不需要提供sample数据,
        初始化period参数:sample_period、last_period、period_left
     */
    if (!is_sampling_event(event)) {
        /*
         * For non-sampling runs, limit the sample_period to half
         * of the counter width. That way, the new counter value
         * is far less likely to overtake the previous one unless
         * you have some serious IRQ latency issues.
         */
        hwc->sample_period  = armpmu->max_period >> 1;
        hwc->last_period    = hwc->sample_period;
        local64_set(&hwc->period_left, hwc->sample_period);
    }

    if (event->group_leader != event) {
        if (validate_group(event) != 0)
            return -EINVAL;
    }

    return 0;
}

3、event add/del

在“perf_event内核框架”一章中已经阐明,task维度的perf_event需要和task一起调度,其回调函数最后控制的就是perf_event的启动和停止。

  • start函数调用路径:context_switch() -> finish_task_switch() -> perf_event_task_sched_in() -> __perf_event_task_sched_in() -> perf_event_context_sched_in() -> perf_event_sched_in() -> ctx_sched_in() -> ctx_pinned_sched_in()/ctx_flexible_sched_in() -> group_sched_in() -> event_sched_in() -> pmu->add(event, PERF_EF_START) -> xxx_add():

  • stop函数调用路径:context_switch() -> prepare_task_switch() -> perf_event_task_sched_out() -> __perf_event_task_sched_out() -> perf_event_context_sched_out() -> ctx_sched_out() -> group_sched_out() -> event_sched_out() -> pmu->del() -> xxx_del():

可以看到hw counter是非常珍贵的,arm64一个cpu上只有7个counter,而一个perf_event在一个cpu上运行时就需要消耗一个独立的hw counter。不像软件的pmu,多个perf_event可以以链表的形式无限的链接到同一个pmu数据源的per_cpu链表上。

我们具体看看hardware pmu的add和del函数的实现:

  • armpmu_add()。从本cpu的counters中分配空闲的counter,配置成perf_event指定的type,并且配置count指定多少count后中断,最后使能counter。
static int
armpmu_add(struct perf_event *event, int flags)
{
    struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
    struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
    struct hw_perf_event *hwc = &event->hw;
    int idx;
    int err = 0;

    /* An event following a process won't be stopped earlier */
    if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
        return -ENOENT;

    /* (1) disable本cpu上所有的counter */
    perf_pmu_disable(event->pmu);

    /* If we don't have a space for the counter then finish early. */
    /* (2) 从本cpu上获取一个空闲的counter */
    idx = armpmu->get_event_idx(hw_events, event);
    if (idx < 0) {
        err = idx;
        goto out;
    }

    /*
     * If there is an event in the counter we are going to use then make
     * sure it is disabled.
     */
    event->hw.idx = idx;
    armpmu->disable(event);
    hw_events->events[idx] = event;

    hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
    /* (3) 使能新分配的counter:
        把counter配置成perf_event需要的type
        并且配置period count,到期后会产生中断,在中断中上报数据并且重新配置period count
     */
    if (flags & PERF_EF_START)
        armpmu_start(event, PERF_EF_RELOAD);

    /* Propagate our changes to the userspace mapping. */
    perf_event_update_userpage(event);

out:
    /* (4) 重新使能本cpu上所有的counter */
    perf_pmu_enable(event->pmu);
    return err;
}

|→

void perf_pmu_disable(struct pmu *pmu)
{
    int *count = this_cpu_ptr(pmu->pmu_disable_count);
    if (!(*count)++)
        /* 调用armpmu_disable() */
        pmu->pmu_disable(pmu);
}

||→

static void armpmu_disable(struct pmu *pmu)
{
    struct arm_pmu *armpmu = to_arm_pmu(pmu);

    /* For task-bound events we may be called on other CPUs */
    if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
        return;

    /* 调用armv8pmu_stop() */
    armpmu->stop(armpmu);
}

|||→

static void armv8pmu_stop(struct arm_pmu *cpu_pmu)
{
    unsigned long flags;
    struct pmu_hw_events *events = this_cpu_ptr(cpu_pmu->hw_events);

    raw_spin_lock_irqsave(&events->pmu_lock, flags);
    /* Disable all counters */
    /* (1.1) disable本cpu上所有的counter */
    armv8pmu_pmcr_write(armv8pmu_pmcr_read() & ~ARMV8_PMCR_E);
    raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
}

|→

static int armv8pmu_get_event_idx(struct pmu_hw_events *cpuc,
                  struct perf_event *event)
{
    int idx;
    struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
    struct hw_perf_event *hwc = &event->hw;
    unsigned long evtype = hwc->config_base & ARMV8_EVTYPE_EVENT;

    /* Place the first cycle counter request into the cycle counter. */
    /* (2.1) 如果需要cycles counter,先尝试counter 0 */
    if (evtype == ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES) {
        if (!test_and_set_bit(ARMV8_IDX_CYCLE_COUNTER, cpuc->used_mask))
            return ARMV8_IDX_CYCLE_COUNTER;
    }

    /*
     * For anything other than a cycle counter, try and use
     * the events counters
     */
    /* (2.2) 否则从counter 1开始寻找空闲counter */
    for (idx = ARMV8_IDX_COUNTER0; idx < cpu_pmu->num_events; ++idx) {
        if (!test_and_set_bit(idx, cpuc->used_mask))
            return idx;
    }

    /* The counters are all in use. */
    return -EAGAIN;
}

|→

static void armpmu_start(struct perf_event *event, int flags)
{
    struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
    struct hw_perf_event *hwc = &event->hw;

    /*
     * ARM pmu always has to reprogram the period, so ignore
     * PERF_EF_RELOAD, see the comment below.
     */
    if (flags & PERF_EF_RELOAD)
        WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));

    hwc->state = 0;
    /*
     * Set the period again. Some counters can't be stopped, so when we
     * were stopped we simply disabled the IRQ source and the counter
     * may have been left counting. If we don't do this step then we may
     * get an interrupt too soon or *way* too late if the overflow has
     * happened since disabling.
     */
    /* (3.1) 设置counter的中断次数 */
    armpmu_event_set_period(event);

    /* (3.2) 配置counter type,并且使能counter */
    armpmu->enable(event);
}

||→

int armpmu_event_set_period(struct perf_event *event)
{
    struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
    struct hw_perf_event *hwc = &event->hw;
    s64 left = local64_read(&hwc->period_left);
    s64 period = hwc->sample_period;
    int ret = 0;

    /* (3.1.1) left初始值为period,中断后:left -= delta ,
        如果上次实际发生中断的间隔delta准确等于period,left=0
        如果上次实际发生中断的间隔delta准确大于period,left<0
        如果上次实际发生中断的间隔delta准确大于2period,left <= -period,这种情况下没有补差的必要直接重新对其period
    */
    if (unlikely(left <= -period)) {
        left = period;
        local64_set(&hwc->period_left, left);
        hwc->last_period = period;
        ret = 1;
    }

    /* (3.1.2) 如果上次实际发生中断的间隔delta准确等于period,left=0
        如果上次实际发生中断的间隔delta准确大于period,left<0
        如果上次实际发生中断的间隔delta准确大于2period,left <= -period
        如果上次实际发生中断的间隔delta准确大于period但是小于2period,尝试重新补差同步,
    */
    if (unlikely(left <= 0)) {
        left += period;
        local64_set(&hwc->period_left, left);
        hwc->last_period = period;
        ret = 1;
    }

    /*
     * Limit the maximum period to prevent the counter value
     * from overtaking the one we are about to program. In
     * effect we are reducing max_period to account for
     * interrupt latency (and we are being very conservative).
     */
    /* (3.1.3) left不能大于最大周期的1/2 */
    if (left > (armpmu->max_period >> 1))
        left = armpmu->max_period >> 1;

    /* (3.1.4) 配置prev_count为-left */
    local64_set(&hwc->prev_count, (u64)-left);

    /* (3.1.5) 配置counter为-left 
        当counter累加到0后产生中断
     */
    armpmu->write_counter(event, (u64)(-left) & 0xffffffff);

    perf_event_update_userpage(event);

    return ret;
}

|||→

static inline void armv8pmu_write_counter(struct perf_event *event, u32 value)
{
    struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
    struct hw_perf_event *hwc = &event->hw;
    int idx = hwc->idx;

    if (!armv8pmu_counter_valid(cpu_pmu, idx))
        pr_err("CPU%u writing wrong counter %d\n",
            smp_processor_id(), idx);
    /* (3.1.5.1) 默认就是counter 0,直接配置count */
    else if (idx == ARMV8_IDX_CYCLE_COUNTER)
        armv8pmu_pmccntr_write_reg(value);

    /* (3.1.5.2) 否则需要先选择counter编号,再配置count */
    else if (armv8pmu_select_counter(idx) == idx)
        armv8pmu_pmxevcntr_write_reg(value);
}

||→

static void armv8pmu_enable_event(struct perf_event *event)
{
    unsigned long flags;
    struct hw_perf_event *hwc = &event->hw;
    struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
    struct pmu_hw_events *events = this_cpu_ptr(cpu_pmu->hw_events);
    int idx = hwc->idx;

    /*
     * Enable counter and interrupt, and set the counter to count
     * the event that we're interested in.
     */
    raw_spin_lock_irqsave(&events->pmu_lock, flags);

    /*
     * Disable counter
     */
    /* (3.2.1) disable counter */
    armv8pmu_disable_counter(idx);

    /*
     * Set event (if destined for PMNx counters).
     */
    /* (3.2.2) 根据perf_event映射转换的type,配置counter的type */
    armv8pmu_write_evtype(idx, hwc->config_base);

    /*
     * Enable interrupt for this counter
     */
    /* (3.2.3) enable counter的中断 */
    armv8pmu_enable_intens(idx);

    /*
     * Enable counter
     */
    /* (3.2.4) enable counter */
    armv8pmu_enable_counter(idx);

    raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
}

|→

void perf_pmu_enable(struct pmu *pmu)
{
    int *count = this_cpu_ptr(pmu->pmu_disable_count);
    if (!--(*count))
        pmu->pmu_enable(pmu);
}

||→

static void armpmu_enable(struct pmu *pmu)
{
    struct arm_pmu *armpmu = to_arm_pmu(pmu);
    struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
    int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);

    /* For task-bound events we may be called on other CPUs */
    if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
        return;

    if (enabled)
        armpmu->start(armpmu);
}

|||→

static void armv8pmu_start(struct arm_pmu *cpu_pmu)
{
    unsigned long flags;
    struct pmu_hw_events *events = this_cpu_ptr(cpu_pmu->hw_events);

    raw_spin_lock_irqsave(&events->pmu_lock, flags);
    /* Enable all counters */
    /* (4.1) 重新使能本cpu上所有的counter */
    armv8pmu_pmcr_write(armv8pmu_pmcr_read() | ARMV8_PMCR_E);
    raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
}
  • armpmu_del()。将event对应的counter停工,并且将counter归还给本cpu的空闲counter。
static void
armpmu_del(struct perf_event *event, int flags)
{
    struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
    struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
    struct hw_perf_event *hwc = &event->hw;
    int idx = hwc->idx;

    /* (1) 将event对应的counter停工 */
    armpmu_stop(event, PERF_EF_UPDATE);

    /* (2) 将counter归还给本cpu的空闲counter */
    hw_events->events[idx] = NULL;
    clear_bit(idx, hw_events->used_mask);
    if (armpmu->clear_event_idx)
        armpmu->clear_event_idx(hw_events, event);

    perf_event_update_userpage(event);
}

4、event 数据采集

这里写图片描述

hardware event是采样法,采样法都是依赖于中断实现的:

  • 配置counter的count,当count累加到0后,产生中断
  • arm64每个cpu上多个counter共享一个中断,所以中断处理函数中需要分发中断,查看到底是哪一个counter发生了overflow
  • 如果是某个counter发出的中断,给其对应的perf_event上报count数据和sample数据
  • 处理完所以事务后,重新配置counter的count,这样就会重复的产生周期性的采样

具体的中断处理函数如下:

static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
{
    struct arm_pmu *armpmu;
    struct platform_device *plat_device;
    struct arm_pmu_platdata *plat;
    int ret;
    u64 start_clock, finish_clock;

    /*
     * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
     * the handlers expect a struct arm_pmu*. The percpu_irq framework will
     * do any necessary shifting, we just need to perform the first
     * dereference.
     */
    armpmu = *(void **)dev;
    plat_device = armpmu->plat_device;
    plat = dev_get_platdata(&plat_device->dev);

    start_clock = sched_clock();
    if (plat && plat->handle_irq)
        ret = plat->handle_irq(irq, armpmu, armpmu->handle_irq);
    else
        /* (1) 实际调用了armv8pmu_handle_irq() */
        ret = armpmu->handle_irq(irq, armpmu);
    finish_clock = sched_clock();

    perf_sample_event_took(finish_clock - start_clock);
    return ret;
}

|→

static irqreturn_t armv8pmu_handle_irq(int irq_num, void *dev)
{
    u32 pmovsr;
    struct perf_sample_data data;
    struct arm_pmu *cpu_pmu = (struct arm_pmu *)dev;
    struct pmu_hw_events *cpuc = this_cpu_ptr(cpu_pmu->hw_events);
    struct pt_regs *regs;
    int idx;

    /*
     * Get and reset the IRQ flags
     */
    pmovsr = armv8pmu_getreset_flags();

    /*
     * Did an overflow occur?
     */
    if (!armv8pmu_has_overflowed(pmovsr))
        return IRQ_NONE;

    /*
     * Handle the counter(s) overflow(s)
     */
    regs = get_irq_regs();

    /* (1.1) 逐个轮询,是本cpu上的哪个counter产生的中断 */
    for (idx = 0; idx < cpu_pmu->num_events; ++idx) {
        struct perf_event *event = cpuc->events[idx];
        struct hw_perf_event *hwc;

        /* Ignore if we don't have an event. */
        if (!event)
            continue;

        /*
         * We have a single interrupt for all counters. Check that
         * each counter has overflowed before we process it.
         */
        /* (1.1.1) 判断是否当前counter产生的中断 */
        if (!armv8pmu_counter_has_overflowed(pmovsr, idx))
            continue;

        hwc = &event->hw;

        /* (1.1.2) 计算counter的差值,并且更新perf_event的count值 */
        armpmu_event_update(event);


        perf_sample_data_init(&data, 0, hwc->last_period);

        /* (1.1.3) 重新配置中断周期 */
        if (!armpmu_event_set_period(event))
            continue;

        /* (1.1.4) 给对应perf_event上报sample数据 */
        if (perf_event_overflow(event, &data, regs))
            cpu_pmu->disable(event);
    }

    /*
     * Handle the pending perf events.
     *
     * Note: this call *must* be run with interrupts disabled. For
     * platforms that can have the PMU interrupts raised as an NMI, this
     * will not work.
     */
    /* (1.2) 处理irq_work_queue()压入的任务 */
    irq_work_run();

    return IRQ_HANDLED;
}

||→

u64 armpmu_event_update(struct perf_event *event)
{
    struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
    struct hw_perf_event *hwc = &event->hw;
    u64 delta, prev_raw_count, new_raw_count;

again:
    prev_raw_count = local64_read(&hwc->prev_count);

    /* (1.1.2.1) 读取counter的当前count值 */
    new_raw_count = armpmu->read_counter(event);

    if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
                 new_raw_count) != prev_raw_count)
        goto again;

    /* (1.1.2.2) 计算和上一次的差值 */
    delta = (new_raw_count - prev_raw_count) & armpmu->max_period;

    /* (1.1.2.3) 把差值更新到perf_event的count中 */
    local64_add(delta, &event->count);

    /* (1.1.2.4) 把差值更新到left中 */
    local64_sub(delta, &hwc->period_left);

    return new_raw_count;
}

4.1、count数据

perf_event的count数据,除了在上一节的中断中更新,在read操作读取时也会更新最新的count。

perf_read() -> __perf_read() -> perf_read_one() -> perf_event_read_value() -> perf_event_read() -> __perf_event_read():

static void __perf_event_read(void *info)
{
    struct perf_read_data *data = info;
    struct perf_event *sub, *event = data->event;
    struct perf_event_context *ctx = event->ctx;
    struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
    struct pmu *pmu = event->pmu;

    /*
     * If this is a task context, we need to check whether it is
     * the current task context of this cpu.  If not it has been
     * scheduled out before the smp call arrived.  In that case
     * event->count would have been updated to a recent sample
     * when the event was scheduled out.
     */
    if (ctx->task && cpuctx->task_ctx != ctx)
        return;

    raw_spin_lock(&ctx->lock);
    if (ctx->is_active) {
        update_context_time(ctx);
        update_cgrp_time_from_event(event);
    }

    update_event_times(event);
    if (event->state != PERF_EVENT_STATE_ACTIVE)
        goto unlock;

    if (!data->group) {
        /* (1) 调用pmu->read()函数更新最新的count值 
            如果是hardware pmu实际调用到armpmu_read()
         */
        pmu->read(event);
        data->ret = 0;
        goto unlock;
    }

    pmu->start_txn(pmu, PERF_PMU_TXN_READ);

    pmu->read(event);

    list_for_each_entry(sub, &event->sibling_list, group_entry) {
        update_event_times(sub);
        if (sub->state == PERF_EVENT_STATE_ACTIVE) {
            /*
             * Use sibling's PMU rather than @event's since
             * sibling could be on different (eg: software) PMU.
             */
            sub->pmu->read(sub);
        }
    }

    data->ret = pmu->commit_txn(pmu);

unlock:
    raw_spin_unlock(&ctx->lock);
}

↓

static void
armpmu_read(struct perf_event *event)
{
    armpmu_event_update(event);
}

↓

u64 armpmu_event_update(struct perf_event *event)
{
    struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
    struct hw_perf_event *hwc = &event->hw;
    u64 delta, prev_raw_count, new_raw_count;

again:
    prev_raw_count = local64_read(&hwc->prev_count);
    new_raw_count = armpmu->read_counter(event);

    if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
                 new_raw_count) != prev_raw_count)
        goto again;

    delta = (new_raw_count - prev_raw_count) & armpmu->max_period;

    local64_add(delta, &event->count);
    local64_sub(delta, &hwc->period_left);

    return new_raw_count;
}

4.2、sample数据

在中断中定期的上报sample数据:

static irqreturn_t armv8pmu_handle_irq(int irq_num, void *dev)
{


    for (idx = 0; idx < cpu_pmu->num_events; ++idx) {
        struct perf_event *event = cpuc->events[idx];
        struct hw_perf_event *hwc;

        /* Ignore if we don't have an event. */
        if (!event)
            continue;

        /*
         * We have a single interrupt for all counters. Check that
         * each counter has overflowed before we process it.
         */
        if (!armv8pmu_counter_has_overflowed(pmovsr, idx))
            continue;

        hwc = &event->hw;
        armpmu_event_update(event);
        perf_sample_data_init(&data, 0, hwc->last_period);
        if (!armpmu_event_set_period(event))
            continue;

        if (perf_event_overflow(event, &data, regs))
            cpu_pmu->disable(event);
    }

}

↓

int perf_event_overflow(struct perf_event *event,
              struct perf_sample_data *data,
              struct pt_regs *regs)
{
    return __perf_event_overflow(event, 1, data, regs);
}

posted @ 2018-08-02 16:25  pwl999  阅读(490)  评论(0编辑  收藏  举报