4. Median of Two Sorted Arrays
题目描述:
There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). You may assume nums1 and nums2 cannot be both empty. Example 1: nums1 = [1, 3] nums2 = [2] The median is 2.0 Example 2: nums1 = [1, 2] nums2 = [3, 4] The median is (2 + 3)/2 = 2.5
解题思路:现在考虑一个更通用的问题:给定两个已经排好序的、从小到大排列的数组,找到两者所有元素中第k大的元素。假设两个数组A和B的元素个数都大于k/2,我们将A的第k/2个元素A[k/2-1]和B的第k/2个元素B[k/2-1]进行比较,有以下三种情况:
1. A[k/2-1] == B[k/2-1]
2. A[k/2-1] > B[k/2-1]
3. A[k/2-1] < B[k/2-1]
如果是A[k/2-1] < B[k/2-1],则可以进行如下的分析:
比A[k/2-1]小的元素的个数至多为 k/2-1+k/2-1=k-2 个,所以若将A和B合并为一个数组C,将C中的元素从小到大排列,则C的第k大的元素Ck一定在A[k/2-1]的右侧,即A的前k/2个元素一定不是Ck,可将它们排出搜索范围。
以此类推,若A[k/2-1] > B[k/2-1],则可将B的前k/2个元素排出搜索范围。
若A[k/2-1] == B[k/2-1],则A[k/2-1]或B[k/2-1]为第k大的元素。
以上分析都以k为偶数为前提,当k为奇数时,所得结论也是成立的。
参考代码:
double find_kth(std::vector<int>::const_iterator A, int m, std::vector<int>::const_iterator B, int n, int k) { double median; // always assume that m is equal or smaller than n if (m > n) { median = find_kth(B, n, A, m, k); return median; } if (m == 0) { median = *(B + k - 1); return median; } if (k == 1) { median = min(*A, *B); return median; } // divide k into two parts int ia = min(k / 2, m), ib = k - ia; if (*(A + ia - 1) < *(B + ib - 1)) { median = find_kth(A + ia, m - ia, B, n, k - ia); return median; } else if (*(A + ia - 1) > *(B + ib - 1)) { median = find_kth(A, m, B + ib, n - ib, k - ib); return median; } else { median = A[ia - 1]; return median; } } double findMedianSortedArrays(const vector<int>& A, const vector<int>& B) { const int m = A.size(); const int n = B.size(); int total = m + n; double median; if (total & 1) { median = find_kth(A.begin(), m, B.begin(), n, total / 2 + 1); return median; } else { median = (find_kth(A.begin(), m, B.begin(), n, total / 2) + find_kth(A.begin(), m, B.begin(), n, total / 2 + 1)) / 2.0; return median; } }