7树
3构建
就是分治 找准位置就行 前后有个n+1所以需要判断
前中
class Solution {
//分治
//语义是 [a,b]那么就要根据这个来
Map<Integer,Integer> map = new HashMap<>();
public TreeNode buildTree(int[] pre, int[] mid) {
//把逻辑捋清楚再说
for(int i = 0; i<mid.length; i++){
//我们是想要下标 所以这里v是i
map.put(mid[i],i);
}
return build(pre,0,pre.length-1,0,pre.length-1);
}
//分治一定是相对位置
private TreeNode build(int[] pre, int p_a, int p_b, int m_a, int m_b){
//我们只用pre
if(p_a > p_b || m_a > m_b) return null;
//p不需要mid
//int p_mid = (p_a + p_b) / 2;
int m_mid = map.get(pre[p_a]);
TreeNode root = new TreeNode(pre[p_a]);
//要把左半部分长度求出来
int lenl = m_mid - m_a;
int lenr = m_b - m_mid;
root.left = build(pre,p_a+1,p_a+lenl,m_a,m_mid-1);
root.right = build(pre,p_a+1+lenl,p_b,m_mid+1,m_b);
return root;
}
}
中后
class Solution {
Map<Integer,Integer> map = new HashMap<>();
public TreeNode buildTree(int[] inorder, int[] postorder) {
for(int i =0; i < inorder.length; i++){
map.put(inorder[i],i);
}
return build(postorder,0,inorder.length-1,0,inorder.length-1);
}
private TreeNode build(int[] post,int m_a, int m_b, int h_a, int h_b){
if(m_a > m_b || h_a > h_b) return null;
int tar = post[h_b];
int mid = map.get(tar);
//找长度 不难
int len = mid-m_a;
TreeNode root = new TreeNode(tar);
root.left = build(post,m_a,mid-1,h_a,h_a+len-1);
root.right =build(post,mid+1,m_b,h_a+len,h_b-1) ;
return root;
}
}
前后
class Solution {
Map<Integer,Integer> map = new HashMap<>();
public TreeNode constructFromPrePost(int[] preorder, int[] postorder) {
for(int i = 0 ;i<postorder.length;i++){
map.put(postorder[i],i);
}
return build(preorder,0,postorder.length-1,0,postorder.length-1);
}
//按常规的写一写
private TreeNode build(int[] pre,int p_a,int p_b,int w_a,int w_b){
if(p_a > p_b || w_a > w_b) return null;
//按index来
TreeNode root = new TreeNode(pre[p_a]);
// if(p_a+1 > p_b) return root;
int index = map.get(pre[p_a+1]);
int len = index - w_a+1;
root.left = build(pre, p_a+1, p_a+len, w_a, index);
root.right = build(pre, p_a+len+1, p_b, index+1, w_b-1);
return root;
}
}
3遍历
前太简单。和递归一样,只能从stack拿。来源有两个,stack和root。后可能需要回炉,判断条件就是pre。
前
class Solution {
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<>();
if(root == null) return res;
Deque<TreeNode> stack = new LinkedList<>();
//用普通的就好
stack.push(root);
while(!stack.isEmpty()){
TreeNode t = stack.pop();
res.add(t.val);
if(t.right != null) stack.push(t.right);
if(t.left != null) stack.push(t.left);
}
return res;
}
}
中
class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<>();
Deque<TreeNode> stack = new LinkedList<>();
//需要用到stack或者root
while(!stack.isEmpty() || root != null){
while(root != null){
stack.push(root);
root = root.left;
}
TreeNode t = stack.pop();
res.add(t.val);
root = t.right;
}
return res;
}
}
后
class Solution {
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<>();
Deque<TreeNode> stack = new LinkedList<>();
TreeNode pre = null;
while(!stack.isEmpty() || root != null){
while(root != null){
stack.push(root);
root = root.left;
}
TreeNode t = stack.pop();
if(t.right == null || pre == t.right){
res.add(t.val);
pre = t;
root = null;
}else{
stack.push(t);
root = t.right;
}
}
return res;
}
}
1层次
size是队列长度就好了
class Solution {
public List<List<Integer>> levelOrder(TreeNode root) {
List<List<Integer>> res = new ArrayList<>();
if(root == null) return res;
//List<List<Integer>> tmp = new ArrayList<>();
//无非就是一个进队 然后丢失
Deque<TreeNode> queue = new LinkedList<>();
queue.offer(root);
//
while(!queue.isEmpty()){
List<Integer> cur = new ArrayList<>();
int x = queue.size();
for(int i = 0 ; i<x; i++){
TreeNode t = queue.poll();
cur.add(t.val);
if(t.left != null) queue.offer(t.left);
if(t.right != null) queue.offer(t.right);
}
res.add(cur);
}
return res;
}
}