python基础(十七):函数
在正式讲述函数之前,先给大家说明一点:编写函数就是“面向过程”的方式,编写类就是“面向对象“的方式。你如果不知道这是啥意思,至少别人提到这2个词你应该知道是在干嘛。
函数的相关概念解释
函数是带有特有名字的代码块儿,用于帮助我们实现具体的功能。在正式讲述Python函数之前,这里首先给大家讲述一下函数的概念、好处和注意事项。
- 概念: 将一组逻辑语句封装在方法体中,对外暴露方法名
- 好处: 隐藏了实现细节,提高代码的重用性
- 注意事项: 编写并调用一个函数,我们必须要知道:
- ① 函数的功能
- ② 函数名
函数的语法结构拆解
说了真么多,那么怎么样编写一个函数呢?这就涉及到函数的语法结构了。
# 定义函数
def 函数名(形式参数1,形式参数2,...):
"""文档描述"""
函数体
return 值
# 函数调用
函数名(实际参数1,实际参数2,...)
哈哈,对于没有学习函数的同学来说,是不是一脸茫然?接着我给大家讲解一下每一部分的含义,做一个大拆解。
- def: 它是定义函数的关键字,看到这个关键字,表示我们定义了一个函数;
- 函数名: 类似于我们定义一个变量。函数名直接指向的是函数的内存地址,表示对函数体代码的引用,因此我们可以直接通过函数名,来调用函数,实现既定功能;
- 括号: 括号内用于参数传递,但是该参数是可有可无的;
- 冒号: 这是语法结构,没有为什么,这个冒号要一再强调,不能省略;
- """文档描述""": 用于描述该函数的功能,介绍一些参数信息,不是必须的,但是为了自己和他人以后能够看明白,建议加上;
- 函数体: 用于实现特定功能的代码块儿;
- return 值:
- 函数体内部可以用
return
随时返回函数结果; - 函数执行完毕也没有
return
语句时,自动return None
。 - 函数可以同时返回多个值,但其实就是一个tuple。
- 函数体内部可以用
空函数
如果想定义一个什么事也不做的空函数,可以用pass
语句:
def nop():
pass
pass
语句什么都不做,那有什么用?实际上pass
可以用来作为占位符,比如现在还没想好怎么写函数的代码,就可以先放一个pass
,让代码能运行起来。
pass
还可以用在其他语句里,比如:
if age >= 18:
pass
缺少了pass
,代码运行就会有语法错误。
返回值
上面我们已经知道:函数的返回值是可有可无的,有时候我们只需要直接显示输出,但有时候我们需要利用返回值,做一些其他的操作。
下面的演示,可能会涉及到”传参‘,不明白不要紧,咋们后面会慢慢讲述。
无返回值
比如:我们只想做一个简单的自我介绍,我们直接显示输出就好。
name = "梁同学"
age = 18
addr = "山东"
def my_intro(name, age, addr):
print(f"我的名字是{name}")
print(f"我今年{age}岁")
print(f"我来自{addr}")
my_intro(name, age, addr)
# 我的名字是梁同学
# 我今年18岁
# 我来自山东
有返回值
比如:求平均成绩,后面我要利用这个平均成绩,做一个汇报。
chinese = 91
math = 95
english = 90
def age_score(chinese, math, english):
avg = (english + math + chinese) / 3
return avg
avg = age_score(chinese, math, english)
print(f"我的平均成绩是:{avg}")
# 我的平均成绩是:92.0
有多个返回值
函数可以返回多个值吗?答案是肯定的。
比如在游戏中经常需要从一个点移动到另一个点,给出坐标、位移和角度,就可以计算出新的坐标:
import math
def move(x, y, step, angle=0):
nx = x + step * math.cos(angle)
ny = y - step * math.sin(angle)
return nx, ny
import math
语句表示导入math
包,并允许后续代码引用math
包里的sin
、cos
等函数。
然后,我们就可以同时获得返回值:
x, y = move(100, 100, 60, math.pi / 6)
print(x, y)
# 151.96152422706632 70.0
但其实这只是一种假象,Python函数返回的仍然是单一值:
r = move(100, 100, 60, math.pi / 6)
print(r, type(r))
# (151.96152422706632, 70.0) <class 'tuple'>
原来返回值是一个tuple!但是,在语法上,返回一个tuple可以省略括号,而多个变量可以同时接收一个tuple,按位置赋给对应的值,所以,Python的函数返回多值其实就是返回一个tuple,但写起来更方便。
参数的传递
无参传递
对于一个简单的函数,我们不需要传递任何参数,当然也没有返回值。这样的函数无法实现复杂的功能,很简单,但我们需要了解。
def func1():
print("今天天气真是好!")
func1()
# 今天天气真是好!
有参传递
有时候为了是的代码的可扩展性更高,需要给函数传递参数,来帮助我们实现更复杂的功能。在详细讲述有参传递之前,我们用一个简单的案例(如图所示),讲述“形参”和“实参”这两个概念。
name = "梁同学"
def func2(name):
print(f"我的名字叫做:{name}")
func2(name)
# 我的名字叫做:梁同学
形参和实参的概念:
- 形参: 函数完成某个功能,所需的一项信息;
- 实参: 调用函数时,传递给函数的具体信息;
总结一下:函数定义中传入参数,叫做形参。调用函数时,传入的参数,叫做实参。
定义函数的时候,我们把参数的名字和位置确定下来,函数的接口定义就完成了。对于函数的调用者来说,只需要知道如何传递正确的参数,以及函数将返回什么样的值就够了,函数内部的复杂逻辑被封装起来,调用者无需了解。
Python的函数定义非常简单,但灵活度却非常大。除了正常定义的必选参数外,还可以使用默认参数、可变参数和关键字参数,使得函数定义出来的接口,不但能处理复杂的参数,还可以简化调用者的代码。
位置参数
我们先写一个计算x2的函数:
def power(x):
return x * x
对于power(x)
函数,参数x
就是一个位置参数。
当我们调用power
函数时,必须传入有且仅有的一个参数x
:
>>> power(5)
25
>>> power(15)
225
现在,如果我们要计算x3怎么办?可以再定义一个power3
函数,但是如果要计算x4、x5……怎么办?我们不可能定义无限多个函数。
你也许想到了,可以把power(x)
修改为power(x, n)
,用来计算xn,说干就干:
def power(x, n):
s = 1
while n > 0:
n = n - 1
s = s * x
return s
对于这个修改后的power(x, n)
函数,可以计算任意n次方:
print(power(5, 2))
# 25
print(power(5, 3))
# 125
修改后的power(x, n)
函数有两个参数:x
和n
,这两个参数都是位置参数,调用函数时,传入的两个值按照位置顺序依次赋给参数x
和n
。
默认参数
新的power(x, n)
函数定义没有问题,但是,旧的调用代码失败了,原因是我们增加了一个参数,导致旧的代码因为缺少一个参数而无法正常调用:
print(power(5))
"""
Traceback (most recent call last):
File "D:/python_project/mxxl/test/test.py", line 9, in <module>
print(power(5))
TypeError: power() missing 1 required positional argument: 'n'
"""
Python的错误信息很明确:调用函数power()
缺少了一个位置参数n
。
这个时候,默认参数就排上用场了。由于我们经常计算x2,所以,完全可以把第二个参数n的默认值设定为2:
def power(x, n=2):
s = 1
while n > 0:
n = n - 1
s = s * x
return s
这样,当我们调用power(5)
时,相当于调用power(5, 2)
:
print(power(5))
# 25
print(power(5, 3))
# 125
而对于n > 2
的其他情况,就必须明确地传入n,比如power(5, 3)
。
从上面的例子可以看出,默认参数可以简化函数的调用。设置默认参数时,有几点要注意:
-
一是必选参数在前,默认参数在后,否则Python的解释器会报错(思考一下为什么默认参数不能放在必选参数前面);
-
二是如何设置默认参数。
当函数有多个参数时,把变化大的参数放前面,变化小的参数放后面。变化小的参数就可以作为默认参数。
使用默认参数有什么好处?最大的好处是能降低调用函数的难度。
举个例子,我们写个一年级小学生注册的函数,需要传入name
和gender
两个参数:
def enroll(name, gender):
print('name:', name)
print('gender:', gender)
这样,调用enroll()
函数只需要传入两个参数:
enroll('Sarah', 'F')
# name: Sarah
# gender: F
如果要继续传入年龄、城市等信息怎么办?这样会使得调用函数的复杂度大大增加。
我们可以把年龄和城市设为默认参数:
def enroll(name, gender, age=6, city='Beijing'):
print('name:', name)
print('gender:', gender)
print('age:', age)
print('city:', city)
这样,大多数学生注册时不需要提供年龄和城市,只提供必须的两个参数:
enroll('Sarah', 'F')
# name: Sarah
# gender: F
# age: 6
# city: Beijing
只有与默认参数不符的学生才需要提供额外的信息:
enroll('Bob', 'M', 7)
enroll('Adam', 'M', city='Tianjin')
可见,默认参数降低了函数调用的难度,而一旦需要更复杂的调用时,又可以传递更多的参数来实现。无论是简单调用还是复杂调用,函数只需要定义一个。
有多个默认参数时,调用的时候,既可以按顺序提供默认参数,比如调用enroll('Bob', 'M', 7)
,意思是,除了name
,gender
这两个参数外,最后1个参数应用在参数age
上,city
参数由于没有提供,仍然使用默认值。
也可以不按顺序提供部分默认参数。当不按顺序提供部分默认参数时,需要把参数名写上。比如调用enroll('Adam', 'M', city='Tianjin')
,意思是,city
参数用传进去的值,其他默认参数继续使用默认值。
默认参数很有用,但使用不当,也会掉坑里。默认参数有个最大的坑,演示如下:
先定义一个函数,传入一个list,添加一个END
再返回:
def add_end(L=[]):
L.append('END')
return L
当你正常调用时,结果似乎不错:
print(add_end([1, 2, 3]))
# [1, 2, 3, 'END']
print(add_end(['x', 'y', 'z']))
# ['x', 'y', 'z', 'END']
当你使用默认参数调用时,一开始结果也是对的:
print(add_end())
# ['END']
但是,再次调用add_end()
时,结果就不对了:
print(add_end())
# ['END', 'END']
print(add_end())
# ['END', 'END', 'END']
很多初学者很疑惑,默认参数是[]
,但是函数似乎每次都“记住了”上次添加了'END'
后的list。
原因解释如下:
Python函数在定义的时候,默认参数L
的值就被计算出来了,即[]
,因为默认参数L
也是一个变量,它指向对象[]
,每次调用该函数,如果改变了L
的内容,则下次调用时,默认参数的内容就变了,不再是函数定义时的[]
了。
定义默认参数要牢记一点:默认参数必须指向不变对象!
要修改上面的例子,我们可以用None
这个不变对象来实现:
def add_end(L=None):
if L is None:
L = []
L.append('END')
return L
现在,无论调用多少次,都不会有问题:
print(add_end())
# ['END']
print(add_end())
# ['END']
为什么要设计str
、None
这样的不变对象呢?因为不变对象一旦创建,对象内部的数据就不能修改,这样就减少了由于修改数据导致的错误。此外,由于对象不变,多任务环境下同时读取对象不需要加锁,同时读一点问题都没有。我们在编写程序时,如果可以设计一个不变对象,那就尽量设计成不变对象。
可变参数
在Python函数中,还可以定义可变参数。顾名思义,可变参数就是传入的参数个数是可变的,可以是1个、2个到任意个,还可以是0个。
我们以数学题为例子,给定一组数字a,b,c……,请计算a2> + b2 + c2+ ……。
要定义出这个函数,我们必须确定输入的参数。由于参数个数不确定,我们首先想到可以把a,b,c……作为一个list或tuple传进来,这样,函数可以定义如下:
def calc(numbers):
sum = 0
for n in numbers:
sum = sum + n * n
return sum
但是调用的时候,需要先组装出一个list或tuple:
print(calc([1, 2, 3]))
# 14
print(calc((1, 3, 5, 7)))
# 84
如果利用可变参数,调用函数的方式可以简化成这样:
print(calc(1, 2, 3))
# 14
print(calc(1, 3, 5, 7))
# 84
所以,我们把函数的参数改为可变参数:
def calc(*numbers):
sum = 0
for n in numbers:
sum = sum + n * n
return sum
定义可变参数和定义一个list或tuple参数相比,仅仅在参数前面加了一个*
号。在函数内部,参数numbers
接收到的是一个tuple,因此,函数代码完全不变。但是,调用该函数时,可以传入任意个参数,包括0个参数:
print(calc(1, 2))
# 5
print(calc())
# 0
如果已经有一个list或者tuple,要调用一个可变参数怎么办?可以这样做:
nums = [1, 2, 3]
print(calc(nums[0], nums[1], nums[2]))
# 14
这种写法当然是可行的,问题是太繁琐,所以Python允许你在list或tuple前面加一个*
号,把list或tuple的元素变成可变参数传进去:
print(calc(*nums))
# 14
*nums
表示把nums
这个list的所有元素作为可变参数传进去。这种写法相当有用,而且很常见。
关键字参数
可变参数允许你传入0个或任意个参数,这些可变参数在函数调用时自动组装为一个tuple。而关键字参数允许你传入0个或任意个含参数名的参数,这些关键字参数在函数内部自动组装为一个dict。请看示例:
def person(name, age, **kw):
print('name:', name, 'age:', age, 'other:', kw)
函数person
除了必选参数name
和age
外,还接受关键字参数kw
。在调用该函数时,可以只传入必选参数:
person('Michael', 30)
# name: Michael age: 30 other: {}
也可以传入任意个数的关键字参数:
person('Bob', 35, city='Beijing')
# name: Bob age: 35 other: {'city': 'Beijing'}
person('Adam', 45, gender='M', job='Engineer')
# name: Adam age: 45 other: {'gender': 'M', 'job': 'Engineer'}
关键字参数有什么用?它可以扩展函数的功能。比如,在person
函数里,我们保证能接收到name
和age
这两个参数,但是,如果调用者愿意提供更多的参数,我们也能收到。试想你正在做一个用户注册的功能,除了用户名和年龄是必填项外,其他都是可选项,利用关键字参数来定义这个函数就能满足注册的需求。
和可变参数类似,也可以先组装出一个dict,然后,把该dict转换为关键字参数传进去:
extra = {'city': 'Beijing', 'job': 'Engineer'}
person('Jack', 24, city=extra['city'], job=extra['job'])
# name: Jack age: 24 other: {'city': 'Beijing', 'job': 'Engineer'}
当然,上面复杂的调用可以用简化的写法:
extra = {'city': 'Beijing', 'job': 'Engineer'}
person('Jack', 24, **extra)
# name: Jack age: 24 other: {'city': 'Beijing', 'job': 'Engineer'}
**extra
表示把extra
这个dict的所有key-value用关键字参数传入到函数的**kw
参数,kw
将获得一个dict,注意kw
获得的dict是extra
的一份拷贝,对kw
的改动不会影响到函数外的extra
。
命名关键字参数
对于关键字参数,函数的调用者可以传入任意不受限制的关键字参数。至于到底传入了哪些,就需要在函数内部通过kw
检查。
仍以person()
函数为例,我们希望检查是否有city
和job
参数:
def person(name, age, **kw):
if 'city' in kw:
# 有city参数
pass
if 'job' in kw:
# 有job参数
pass
print('name:', name, 'age:', age, 'other:', kw)
但是调用者仍可以传入不受限制的关键字参数:
person('Jack', 24, city='Beijing', addr='Chaoyang', zipcode=123456)
如果要限制关键字参数的名字,就可以用命名关键字参数,例如,只接收city
和job
作为关键字参数。这种方式定义的函数如下:
def person(name, age, *, city, job):
print(name, age, city, job)
和关键字参数**kw
不同,命名关键字参数需要一个特殊分隔符*
,*
后面的参数被视为命名关键字参数。
调用方式如下:
person('Jack', 24, city='Beijing', job='Engineer')
# Jack 24 Beijing Engineer
如果函数定义中已经有了一个可变参数,后面跟着的命名关键字参数就不再需要一个特殊分隔符*
了:
def person(name, age, *args, city, job):
print(name, age, args, city, job)
命名关键字参数必须传入参数名,这和位置参数不同。如果没有传入参数名,调用将报错:
person('Jack', 24, 'Beijing', 'Engineer')
"""
Traceback (most recent call last):
File "D:/python_project/mxxl/test/test.py", line 4, in <module>
person('Jack', 24, 'Beijing', 'Engineer')
TypeError: person() missing 2 required keyword-only arguments: 'city' and 'job'
"""
由于调用时缺少参数名city
和job
,Python解释器把这4个参数均视为位置参数,但person()
函数仅接受2个位置参数。
命名关键字参数可以有缺省值,从而简化调用:
def person(name, age, *, city='Beijing', job):
print(name, age, city, job)
由于命名关键字参数city
具有默认值,调用时,可不传入city
参数:
person('Jack', 24, job='Engineer')
# Jack 24 Beijing Engineer
使用命名关键字参数时,要特别注意,如果没有可变参数,就必须加一个*
作为特殊分隔符。如果缺少*
,Python解释器将无法识别位置参数和命名关键字参数:
def person(name, age, city, job):
# 缺少 *,city和job被视为位置参数
pass
参数组合
在Python中定义函数,可以用必选参数、默认参数、可变参数、关键字参数和命名关键字参数,这5种参数都可以组合使用。但是请注意,参数定义的顺序必须是:必选参数、默认参数、可变参数、命名关键字参数和关键字参数。
比如定义一个函数,包含上述若干种参数:
def f1(a, b, c=0, *args, **kw):
print('a =', a, 'b =', b, 'c =', c, 'args =', args, 'kw =', kw)
def f2(a, b, c=0, *, d, **kw):
print('a =', a, 'b =', b, 'c =', c, 'd =', d, 'kw =', kw)
在函数调用的时候,Python解释器自动按照参数位置和参数名把对应的参数传进去。
f1(1, 2)
# a = 1 b = 2 c = 0 args = () kw = {}
f1(1, 2, c=3)
# a = 1 b = 2 c = 3 args = () kw = {}
f1(1, 2, 3, 'a', 'b')
# a = 1 b = 2 c = 3 args = ('a', 'b') kw = {}
f1(1, 2, 3, 'a', 'b', x=99)
# a = 1 b = 2 c = 3 args = ('a', 'b') kw = {'x': 99}
f2(1, 2, d=99, ext=None)
# a = 1 b = 2 c = 0 d = 99 kw = {'ext': None}
最神奇的是通过一个tuple和dict,你也可以调用上述函数:
args = (1, 2, 3, 4)
kw = {'d': 99, 'x': '#'}
f1(*args, **kw)
# a = 1 b = 2 c = 3 args = (4,) kw = {'d': 99, 'x': '#'}
args = (1, 2, 3)
kw = {'d': 88, 'x': '#'}
f2(*args, **kw)
# a = 1 b = 2 c = 3 d = 88 kw = {'x': '#'}
所以,对于任意函数,都可以通过类似func(*args, **kw)
的形式调用它,无论它的参数是如何定义的。
参数检查
调用函数时,如果参数个数不对,Python解释器会自动检查出来,并抛出TypeError
:
def my_abs(x):
if x >= 0:
return x
else:
return -x
my_abs(1, 2)
'''
Traceback (most recent call last):
File "D:/python_project/mxxl/test/test.py", line 8, in <module>
my_abs(1, 2)
TypeError: my_abs() takes 1 positional argument but 2 were given
但是如果参数类型不对,Python解释器就无法帮我们检查。试试my_abs
和内置函数abs
的差别:
my_abs('A')
'''
Traceback (most recent call last):
File "D:/python_project/mxxl/test/test.py", line 8, in <module>
my_abs('A')
File "D:/python_project/mxxl/test/test.py", line 2, in my_abs
if x >= 0:
TypeError: '>=' not supported between instances of 'str' and 'int'
'''
abs('A')
"""
Traceback (most recent call last):
File "D:/python_project/mxxl/test/test.py", line 8, in <module>
abs('A')
TypeError: bad operand type for abs(): 'str'
"""
当传入了不恰当的参数时,内置函数abs
会检查出参数错误,而我们定义的my_abs
没有参数检查,会导致if
语句出错,出错信息和abs
不一样。所以,这个函数定义不够完善。
让我们修改一下my_abs
的定义,对参数类型做检查,只允许整数和浮点数类型的参数。数据类型检查可以用内置函数isinstance()
实现:
def my_abs(x):
if not isinstance(x, (int, float)):
raise TypeError('bad operand type')
if x >= 0:
return x
else:
return -x
添加了参数检查后,如果传入错误的参数类型,函数就可以抛出一个错误:
my_abs('A')
"""
Traceback (most recent call last):
File "D:/python_project/mxxl/test/test.py", line 10, in <module>
my_abs('A')
File "D:/python_project/mxxl/test/test.py", line 3, in my_abs
raise TypeError('bad operand type')
TypeError: bad operand type
"""
错误和异常处理将在后续讲到。