理解离散傅立叶变换[转载整理]
理解离散傅立叶变换[转载]
傅立叶变换的由来
让我们先看看为什么会有傅立叶变换?傅立叶是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,论文里描述运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决 断:任何连续周期信号都可以由一组适当的正弦曲线组合而成。当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在近50年的时间里,拉格朗日坚持认为傅立叶的方法无法表 示带有棱角的信号,如在方波中出现非连续变化斜率。法国科学学会屈服于拉格朗日的威望,否定了傅立叶的工作成果,幸运的是,傅立叶还有其它事情可忙,他参 加了政治运动,随拿破仑远征埃及,法国大革命后因怕会被推上断头台而一直在逃避。直到拉格朗日死后15年这个论文才被发表出来。
谁是对的呢?拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号。但是,我们可以用正弦曲线来非常逼近地表示它,逼近到两种表示方法不存在能量差别,基于此,傅立叶是对的。
为什么我们要用正弦曲线来代替原来的曲线呢?如我们也还可以用方波或三角波来代替呀,分解信号的方法 是无穷多的,但分解信号的目的是为了更加简单地处理原来的信号。用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。 一个正余弦曲线信号输入后,输出的仍是正余弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的。且只有正余弦曲线才拥有这样的性质,正因 如此我们才不用方波或三角波来表示。
FT、DFS、DTFT、DFT、FFT的概念与实质
对于初学数字信号的朋友来说,这几种变换经常会有些小混乱,它们是数字信号处理的理论基石,可以说这个理论有大部分的时间都在研究这些变换和推倒。
FS—傅立叶级数,通过复变函数的学习我们知道时域上任意连续的周期信号可以分解为无限多个正弦信号之和,在频域上就表示为离散非周期的信号,即时域连续周期对应频域离散非周期的特点,这就是傅立叶级数展开(FS),它用于分析连续周期信号。
FT--傅立叶变换,它主要用于分析连续非周期信号,由于信号是非周期的,它必包含了各种频率的信号,所以具有时域连续非周期对应频域连续非周期的特点。
对于一般的周期信号可以用一系列(有限个或者无穷多了)正弦波的叠加来表示。这些正弦波的频率都是某一个特定频率的倍数如5hz、2*5hz、3*5hz……(其中的5hz叫基频)。这是傅立叶级数的思想。所以说周期信号的频率是离散的。 而对于周期信号有一个特点,信号的周期越长,信号的基频越小。非周期信号可以看作周期无穷大的周期信号,那么它的基频就是无穷小,这样它的频率组成就成了连续的了。
FS和FT 都是用于连续信号频谱的分析工具,它们都以傅立叶级数理论问基础推导出的。时域上连续的信号在频域上都有非周期的特点,但对于周期信号和非周期信号又有在频域离散和连续之分。
在自然界中除了存在温度,压力等在时间上连续的信号,还存在一些离散信号,离散信号可经过连续信号采样获得,也有本身就是离散的。例如,某地区的年降水量或平均增长率等信号,这类信号的时间变量为年,不在整数时间点的信号是没有意义的。用于离散信号频谱分析的工具包括DFS,DTFT和DFT。
DTFT是离散时间傅立叶变换 ,它用于离散非周期序列分析,根据连续傅立叶变换要求连续信号在时间上必须可积这一
充分必要条件,那么对于离散时间傅立叶变换,用于它之上的离散序列也必须满足在时间轴上级数求和收敛的条件;由于信号是非周期序列,它必包含了各种频率的信号,所以DTFT对离散非周期信号变换后的频谱为连续的,即有时域离散非周期对应频域连续周期的特点。 当离散的信号为周期序列时,严格的讲,傅立叶变换是不存在的,因为它不满足信号序列绝对级数和收敛(绝对可和)这一傅立叶变换的充要条件,但是采用DFS(离散傅立叶级数)这一分析工具仍然可以对其进行傅立叶分析。我们知道周期离散信号是由无穷多相同的周期序列在时间轴上组成的,假设周期为N,即每个周期序列都有N个元素,而这样的周期序列有无穷多个,由于无穷多个周期序列都相同,所以可以只取其中一个周期就足以表示整个序列了,这个被抽出来表示整个序列特性的周期称为主值周期,这个序列称为主值序列。然后以N对应的频率作为基频构成傅立叶级数展开所需要的复指数序列ek(n)=exp(j*2pi*k*n/N),用主值序列与复指数序列取相关(乘加运算),得出每个主值在各频率上的频谱分量,这样就表示出了周期序列的频谱特性。
根据DTFT,对于有限长序列作Z变换或序列傅立叶变换都是可行的,或者说,有限长序列的频域和复频域分析在理论上都已经解决;但对于数字系统,无论是Z变换还是序列傅立叶变换的适用方面都存在一些问题,重要是因为频率变量的连续性性质(DTFT变换出连续频谱),不便于数字运算和储存。参考DFS,可以采用类似DFS的分析方法对解决以上问题。可以把有限长非周期序列假设为一无限长周期序列的一个主值周期,即对有限长非周期序列进行周期延拓,延拓后的序列完全可以采用DFS进行处理,即采用复指数基频序列和此有限长时间序列取相关,得出每个主值在各频率上的频谱分量以表示出这个“主值周期”的频谱信息。
由于DFT借用了DFS,这样就假设了序列的周期无限性,但在处理时又对区间作出限定(主值区间),以符合有限长的特点,这就使DFT带有了周期性。另外,DFT只是对一周期内的有限个离散频率的表示,所以它在频率上是离散的,就相当于DTFT变换成连续频谱后再对其采样,此时采样频率等于序列延拓后的周期N,即主值序列的个数。
FT、DFS、DTFT、DFT、FFT总结
这些变换的实质都一样,都是将一个复杂信号在一正交系中进行分解,不同在于选择的基不同.付氏变换选择的是复指数与三角基,小波变换选择了其它的基.信号在时域与频域具有对偶性.一个域的周期性与连续性对应于另一个域的离散与非周期性,eg..对于周期性信号连续信号,具绝对可积条件时,在可以进行级数展开,得到了离散的非周期频谱.
DFT与FFT是一个本质,FFT是DFT的一种算法, 为了降低计算量。
DFS是discrete fourier seriers,对离散周期信号进行级数展开.DFT是将DFS取主值,DFS是DFT的周期延拓.
DTFT是对Discrete time fourier transformation,是对序列的FT,得到连续的周期谱,而DFT,FFT得到是有限长的非周期离散谱.
DTFT(时间离散,频率连续) , DFT(时间和频率都离散,可在计算机中处理)
总之,一个域的周期对应另一个域的离散,一个域的非周期对应另一个域的连续。
A域<------------>B域
周期<----------->离散
非周期<-------->连续