python matplotlib 散点图的拟合直线的简单示例
# sample points X = [0, 5, 10, 15, 20] Y = [0, 7, 10, 13, 20] # solve for a and b def best_fit(X, Y): xbar = sum(X) / len(X) ybar = sum(Y) / len(Y) n = len(X) # or len(Y) numer = sum([xi * yi for xi, yi in zip(X, Y)]) - n * xbar * ybar denum = sum([xi ** 2 for xi in X]) - n * xbar ** 2 b = numer / denum a = ybar - b * xbar print('best fit line:\ny = {:.2f} + {:.2f}x'.format(a, b)) return a, b # solution a, b = best_fit(X, Y) # best fit line: # y = 0.80 + 0.92x # plot points and fit line import matplotlib.pyplot as plt plt.scatter(X, Y) yfit = [a + b * xi for xi in X] plt.plot(X, yfit) plt.show()
用Scripy实现最小二乘法与股票K线回归例子
import numpy as np import matplotlib.pyplot as plt from scipy.optimize import leastsq ##样本数据(Xi,Yi),需要转换成数组(列表)形式 Xi = np.array([160, 165, 158, 172, 159, 176, 160, 162, 171]) Yi = np.array([58, 63, 57, 65, 62, 66, 58, 59, 62]) ##需要拟合的函数func :指定函数的形状 k= 0.42116973935 b= -8.28830260655 def func(p, x): k, b = p return k * x + b ##偏差函数:x,y都是列表:这里的x,y更上面的Xi,Yi中是一一对应的 def error(p, x, y): return func(p, x) - y # k,b的初始值,可以任意设定,经过几次试验,发现p0的值会影响cost的值:Para[1] p0 = [1, 20] # 把error函数中除了p0以外的参数打包到args中(使用要求) Para = leastsq(error, p0, args=(Xi, Yi)) print(Para) # 读取结果 k, b = Para[0] print("k=", k, "b=", b) # 画样本点 plt.figure(figsize=(8, 6)) ##指定图像比例:8:6 plt.scatter(Xi, Yi, color="green", label="source", linewidth=2) # 画拟合直线 x = np.linspace(150, 190, 100) ##在150-190直接画100个连续点 y = k * x + b ##函数式 plt.plot(x, y, color="red", label="target", linewidth=2) plt.legend() # 绘制图例 plt.show()
参考:https://www.soinside.com/question/QaunXuEAg3coPrUDgwpoYf
http://www.manongjc.com/detail/58-dlzygymeojwhhtj.html