dp 套 dp扯谈
1.【扯谈概念】
\(dp\) 套 \(dp\) 其实也就是 \(dp\) 。
这里就定义下面两个概念:
内层 \(dp\) 表示的是被套在里面的那个 \(dp\)
外层 \(dp\) 表示的是最外面的那个 \(dp\)
这样可能比较抽象。
举个例子,像这种形式的 \(dp\) 转移:
在这里面 \(g[i][k]\) 是不定的,就是我们开始不知道,是我们求出来的,然后我们利用它去进行后面的转移,把它在后面当成一个恒定的 \(val\) 。我们把求解这个 \(g\) 的过程就叫做内层 \(dp\)。
而我们发现 \(f\) 就是我们要求的真正的一个答案状态,然后是把求解这个 \(g\) 的过程包含着的,我们就把求解 \(f\) 的过程叫做外层 \(dp\) 。
而求解这个问题的过程就叫做 \(dp\) 套 \(dp\) 。
本质上说其实 \(dp\) 套 \(dp\) 在我的理解来看就是首先就是将内层的 \(dp\) 结果,作为外层 \(dp\) 进行转移的方法。
如果通俗说就是先算出每一步可能产生的贡献。
然后依托贡献在来进行一次 \(dp\) 。
2.【例题讲解】
你单独看着这个概念,你可能似懂非懂的。
因为这个东西确实有点抽象,下面配合例题来进行讲解。
The First Problem
题意:
有 \(n\) 块木板,每一块木板长度为 \(m\) ,你可以粉刷 \(t\) 次,每次只能粉刷一块木板上连续的一部分为同一颜色(红色或蓝色),给你一个期望粉刷出的木板的颜色,问你最多能粉刷出多少个与期待相同颜色的格子。
题解:
当拿到这个题目的时候,根据传统,它求什么我们就设什么。
我们可以设状态为 \(f[i][j][k]\) 表示刷 \(i\) 次,刷到第 \(j\) 行,第 \(k\) 列的最多正确粉刷数量。
考虑去转移这个方程,发现可以写出这样的状态转移:
其中的 \(g[j][l][k]\) 表示的是第 \(j\) 行第 \(l\) 列到第 \(k\) 列的最多粉刷正确数。
注意转移的时候从上一行到下一行的处理。
然后这个方程就没问题了。
分析这么的时间复杂度为 \(O(tnm^3)\)
如果将 \(n\) 与 \(m\) 认为同阶,那么复杂度为 \(O(tn^4)\)
显然不可过的样子,得优化一下。
我们考虑 \(dp\) 的复杂度都来源于哪里?
可能是枚举状态也可能是转移的复杂度。
这个转移的复杂度我们发现是无法有效的优化的(至少我不会)。
然后我们考虑缩小它的状态,我们能发现我们等价于是枚举了每个点的 \(dp\) 情况。
我们试着把它弄为每行的 \(dp\) 情况。
那么状态就变为: \(f[i][j]\) 表示的是第 \(i\) 行刷 \(j\) 次的最大正确粉刷数量。