关于计数排序、桶排序与基数排序的小结

把这三个拿到一起来说,是因为这三种排序思想很像。

计数排序、基数排序、桶排序则属于非比较排序。非比较排序是通过确定每个元素之前,应该有多少个元素来排序。针对数组arr,计算arr[i]之前有多少个元素,则唯一确定了arr[i]在排序后数组中的位置。
非比较排序只要确定每个元素之前的已有的元素个数即可,所有一次遍历即可解决。算法时间复杂度O(n)。
非比较排序时间复杂度底,但由于非比较排序需要占用空间来确定唯一位置。所以对数据规模和数据分布有一定的要求。

(这里再说一下其他排序)

常见的快速排序、归并排序、堆排序、冒泡排序等属于比较排序。在排序的最终结果里,元素之间的次序依赖于它们之间的比较。每个数都必须和其他数进行比较,才能确定自己的位置。
在冒泡排序之类的排序中,问题规模为n,又因为需要比较n次,所以平均时间复杂度为O(n²)。在归并排序、快速排序之类的排序中,问题规模通过分治法消减为logN次,所以时间复杂度平均O(nlogn)。
比较排序的优势是,适用于各种规模的数据,也不在乎数据的分布,都能进行排序。可以说,比较排序适用于一切需要排序的情况。

 

1.计数排序:

计数排序需要占用大量空间,它仅适用于数据比较集中的情况。比如 [0~100],[10000~19999] 这样的数据。

计数排序的基本思想是:对每一个输入的元素arr[i],确定小于 arr[i] 的元素个数
所以可以直接把 arr[i] 放到它输出数组中的位置上。假设有5个数小于 arr[i],所以 arr[i] 应该放在数组的第6个位置上。

过程:

待排序数组 int[] arr = new int[]{4,3,6,3,5,1};
辅助计数数组 int[] help = new int[max - min + 1]; //该数组大小为待排序数组中的最大值减最小值+1
输出数组 int[] res = new int[arr.length];

1.求出待排序数组的最大值max=6, 最小值min=1
2.实例化辅助计数数组help,help数组中每个下标对应arr中的一个元素,help用来记录每个元素出现的次数
3.计算 arr 中每个元素在help中的位置 position = arr[i] - min,此时 help = [1,0,2,1,1,1]; (3出现了两次,2未出现)
4.根据 help 数组求得排序后的数组,此时 res = [1,3,3,4,5,6]

 1 public static int[] countSort1(int[] arr){
 2     if (arr == null || arr.length == 0) {
 3         return null;
 4     }
 5     
 6     int max = Integer.MIN_VALUE;
 7     int min = Integer.MAX_VALUE;
 8     
 9     //找出数组中的最大最小值
10     for(int i = 0; i < arr.length; i++){
11         max = Math.max(max, arr[i]);
12         min = Math.min(min, arr[i]);
13     }
14     
15     int help[] = new int[max];
16     
17     //找出每个数字出现的次数
18     for(int i = 0; i < arr.length; i++){
19         int mapPos = arr[i] - min;
20         help[mapPos]++;
21     }
22     
23     int index = 0;
24     for(int i = 0; i < help.length; i++){
25         while(help[i]-- > 0){
26             arr[index++] = i+min;
27         }
28     }
29     
30     return arr;
31 }

另一种实现:

需要三个数组:
待排序数组 int[] arr = new int[]{4,3,6,3,5,1};
辅助计数数组 int[] help = new int[max - min + 1]; //该数组大小为待排序数组中的最大值减最小值+1
输出数组 int[] res = new int[arr.length];

1.求出待排序数组的最大值max=6, 最小值min=1
2.实例化辅助计数数组help,help用来记录每个元素之前出现的元素个数
3.计算 arr 每个数字应该在排序后数组中应该处于的位置,此时 help = [1,1,3,4,5,6];
4.根据 help 数组求得排序后的数组,此时 res = [1,3,3,4,5,6]

 1 public static int[] countSort2(int[] arr){
 2     int max = Integer.MIN_VALUE;
 3     int min = Integer.MAX_VALUE;
 4     
 5     //找出数组中的最大最小值
 6     for(int i = 0; i < arr.length; i++){
 7         max = Math.max(max, arr[i]);
 8         min = Math.min(min, arr[i]);
 9     }
10     
11     int[] help = new int[max - min + 1];
12     
13     //找出每个数字出现的次数
14     for(int i = 0; i < arr.length; i++){
15         int mapPos = arr[i] - min;
16         help[mapPos]++;
17     }
18     
19     //计算每个数字应该在排序后数组中应该处于的位置
20     for(int i = 1; i < help.length; i++){
21         help[i] = help[i-1] + help[i];
22     }
23     
24     //根据help数组进行排序
25     int res[] = new int[arr.length];
26     for(int i = 0; i < arr.length; i++){
27         int post = --help[arr[i] - min];
28         res[post] = arr[i];
29     }
30     
31     return res;
32 }

 

2.桶排序

桶排序可用于最大最小值相差较大的数据情况,比如[9012,19702,39867,68957,83556,102456]。
但桶排序要求数据的分布必须均匀,否则可能导致数据都集中到一个桶中。比如[104,150,123,132,20000], 这种数据会导致前4个数都集中到同一个桶中。导致桶排序失效。

桶排序的基本思想是:把数组 arr 划分为n个大小相同子区间(桶),每个子区间各自排序,最后合并
计数排序是桶排序的一种特殊情况,可以把计数排序当成每个桶里只有一个元素的情况。

1.找出待排序数组中的最大值max、最小值min
2.我们使用 动态数组ArrayList 作为桶,桶里放的元素也用 ArrayList 存储。桶的数量为(max-min)/arr.length+1
3.遍历数组 arr,计算每个元素 arr[i] 放的桶
4.每个桶各自排序
5.遍历桶数组,把排序好的元素放进输出数组

 1 public static void bucketSort(int[] arr){
 2     
 3     int max = Integer.MIN_VALUE;
 4     int min = Integer.MAX_VALUE;
 5     for(int i = 0; i < arr.length; i++){
 6         max = Math.max(max, arr[i]);
 7         min = Math.min(min, arr[i]);
 8     }
 9     
10     //桶数
11     int bucketNum = (max - min) / arr.length + 1;
12     ArrayList<ArrayList<Integer>> bucketArr = new ArrayList<>(bucketNum);
13     for(int i = 0; i < bucketNum; i++){
14         bucketArr.add(new ArrayList<Integer>());
15     }
16     
17     //将每个元素放入桶
18     for(int i = 0; i < arr.length; i++){
19         int num = (arr[i] - min) / (arr.length);
20         bucketArr.get(num).add(arr[i]);
21     }
22     
23     //对每个桶进行排序
24     for(int i = 0; i < bucketArr.size(); i++){
25         Collections.sort(bucketArr.get(i));
26     }
27     
28     System.out.println(bucketArr.toString());
29     
30 }

 

3.基数排序

基数排序已经不再是一种常规的排序方式,它更多地像一种排序方法的应用,基数排序必须依赖于另外的排序方法。基数排序的总体思路就是将待排序数据拆分成多个关键字进行排序,也就是说,基数排序的实质是多关键字排序。

如果按照习惯思维,会先比较百位,百位大的数据大,百位相同的再比较十位,十位大的数据大;最后再比较个位。人得习惯思维是最高位优先方式。但一旦这样,当开始比较十位时,程序还需要判断它们的百位是否相同--这就认为地增加了难度,计算机通常会选择最低位优先法。

基数排序方法对任一子关键字排序时必须借助于另一种排序方法,而且这种排序方法必须是稳定的。对于多关键字拆分出来的子关键字,它们一定位于0-9这个可枚举的范围内,这个范围不大,因此用桶式排序效率非常好。对于多关键字排序来说,程序将待排数据拆分成多个子关键字后,对子关键字排序既可以使用桶式排序,也可以使用任何一种稳定的排序方法。

 1 import java.util.Arrays;
 2 
 3 public class MultiKeyRadixSortTest {
 4 
 5     public static void main(String[] args) {
 6         int[] data = new int[] { 1100, 192, 221, 12, 23 };
 7         print(data);
 8         radixSort(data, 10, 4);
 9         System.out.println("排序后的数组:");
10         print(data);
11     }
12 
13     public static void radixSort(int[] data, int radix, int d) {
14         // 缓存数组
15         int[] tmp = new int[data.length];
16         // buckets用于记录待排序元素的信息
17         // buckets数组定义了max-min个桶
18         int[] buckets = new int[radix];
19 
20         for (int i = 0, rate = 1; i < d; i++) {
21 
22             // 重置count数组,开始统计下一个关键字
23             Arrays.fill(buckets, 0);
24             // 将data中的元素完全复制到tmp数组中
25             System.arraycopy(data, 0, tmp, 0, data.length);
26 
27             // 计算每个待排序数据的子关键字
28             for (int j = 0; j < data.length; j++) {
29                 int subKey = (tmp[j] / rate) % radix;
30                 buckets[subKey]++;
31             }
32 
33             for (int j = 1; j < radix; j++) {
34                 buckets[j] = buckets[j] + buckets[j - 1];
35             }
36 
37             // 按子关键字对指定的数据进行排序
38             for (int m = data.length - 1; m >= 0; m--) {
39                 int subKey = (tmp[m] / rate) % radix;
40                 data[--buckets[subKey]] = tmp[m];
41             }
42             rate *= radix;
43         }
44 
45     }
46 
47     public static void print(int[] data) {
48         for (int i = 0; i < data.length; i++) {
49             System.out.print(data[i] + "\t");
50         }
51         System.out.println();
52     }
53 
54 }

 

posted @ 2017-03-23 09:43  XiaoTeng.bat  阅读(3490)  评论(2编辑  收藏  举报