POJ2478(欧拉函数)
Farey Sequence
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 15242 | Accepted: 6054 |
Description
The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/b with 0 < a < b <= n and gcd(a,b) = 1 arranged in increasing order. The first few are
F2 = {1/2}
F3 = {1/3, 1/2, 2/3}
F4 = {1/4, 1/3, 1/2, 2/3, 3/4}
F5 = {1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5}
You task is to calculate the number of terms in the Farey sequence Fn.
F2 = {1/2}
F3 = {1/3, 1/2, 2/3}
F4 = {1/4, 1/3, 1/2, 2/3, 3/4}
F5 = {1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5}
You task is to calculate the number of terms in the Farey sequence Fn.
Input
There are several test cases. Each test case has only one line, which contains a positive integer n (2 <= n <= 106). There are no blank lines between cases. A line with a single 0 terminates the input.
Output
For each test case, you should output one line, which contains N(n) ---- the number of terms in the Farey sequence Fn.
Sample Input
2 3 4 5 0
Sample Output
1 3 5 9
思路:欧拉函数打表。
#include <cstdio> using namespace std; const int MAXN=1000005; long long euler[MAXN]; void sieve() { for(int i=1;i<MAXN;i++) euler[i]=i; for(int i=2;i<MAXN;i+=2) euler[i]/=2; for(int i=3;i<MAXN;i+=2) { if(euler[i]==i) { for(int j=i;j<MAXN;j+=i) { euler[j]=euler[j]*(i-1)/i; } } } for(int i=3;i<MAXN;i++) { euler[i]+=euler[i-1]; } } int main() { sieve(); int n; while(scanf("%d",&n)!=EOF&&n!=0) { printf("%lld\n",euler[n]); } return 0; }