POJ2407(欧拉函数)
Relatives
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 13693 | Accepted: 6834 |
Description
Given n, a positive integer, how many positive integers less than n are relatively prime to n? Two integers a and b are relatively prime if there are no integers x > 1, y > 0, z > 0 such that a = xy and b = xz.
Input
There are several test cases. For each test case, standard input contains a line with n <= 1,000,000,000. A line containing 0 follows the last case.
Output
For each test case there should be single line of output answering the question posed above.
Sample Input
7 12 0
Sample Output
6 4
欧拉函数入门。
#include <cstdio> using namespace std; int euler(int n) { int ret=n; for(int i=2;i*i<=n;i++) { if(n%i==0) { ret=ret-ret/i; while(n%i==0) n/=i; } } if(n>1) ret=ret-ret/n; return ret; } int main() { int n; while(scanf("%d",&n)!=EOF&&n!=0) { int res=euler(n); printf("%d\n",res); } return 0; }