PCL特征提取与匹配(3):特征匹配问题解决

本文原创:转载请注明出处,谢谢!

使用2中的demo进行特征匹配,

  1. keypoint-methods(关键点提取方法)使用Harris3D角点检测,
  2. descriptor-types (特征点描述)使用FPFH
    运行到
    descriptor_kdtree.nearestKSearch(*source, i, k, k_indices, k_squared_distances);
    correspondences[i] = k_indices[0];
    
    遇到Assertion failed: point_representation_->isValid (point) && "Invalid (NaN, Inf) point coordinates given to nearestKSearch!", file C:\pcl-1.9.1\kdtree\include\pcl/kdtree/impl/kdtree_flann.hpp, line 136的错误

解决方法

  1. 输出计算得到的特征描述子
    发现存在nan点

    printf("inf1");
    typename pcl::PointCloud<FeatureType>::iterator itr;
    for (itr = source->begin(); itr != source->end(); itr++)
    {
        std::cout << *itr << endl;
    }
    printf("inf2");
    
    (nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan)
    (1.43461, 0.68249, 7.00692, 5.67639, 0.586942, 14.6281, 1.97115, 50.7711, 13.3196, 2.07839, 1.84432, 0.0302716, 6.23244,5.27624, 2.1539, 10.8, 21.7394, 9.44449, 9.60597, 18.2812, 6.65871, 9.77746, 0.8217, 54.9463, 10.4616, 1.65747, 5.87402, 7.36899, 1.68395, 3.46515, 4.46561, 8.38836, 0.866902)
    ...    
    
  2. 剔除nan点
    本例中使用FPFH特征描述子,特征描述类型为pcl::FPFHSignature33,pcl::FPFHSignature33的结构中使用float histogram [33] = {0.f}来描述特征,详见PCL文档。并且demo中使用了模板编程,而对于不同的检测特征需要不同的nan点检测与剔除方法。因此需要对demo中findCorrespondences方法进行特化处理,针对pcl::FPFHSignature33类型的编写特定的nan点检测与剔除方法。

    //模板全特化pcl::FPFHSignature33
    template<>
    void ICCVTutorial<pcl::FPFHSignature33>::findCorrespondences(typename pcl::PointCloud<pcl::FPFHSignature33>::Ptr source, typename pcl::PointCloud<pcl::FPFHSignature33>::Ptr target, std::vector<int>& correspondences) const
    {
    std::cout << "correspondence assignment..." << std::flush;
    
    
    printf("inf1//////////////////////////////");
    std::cout << "source cloud size:" << static_cast<int> (source->size()) << endl;
    typename pcl::PointCloud<pcl::FPFHSignature33>::Ptr tempSource(new pcl::PointCloud<pcl::FPFHSignature33>);
    typename pcl::PointCloud<pcl::FPFHSignature33>::iterator itr;
    for (itr = source->begin(); itr != source->end(); itr++)
    {
    	std::cout << *itr << endl;
    	auto hadNan = false; //是否有nan点
    	auto allzero = true; //是否全零
    	for (auto i = 0; i < 33; i++)
    	{
    		//std::cout << (itr->histogram)[i] << endl;
    		if (pcl_isnan((itr->histogram)[i]))
    		{
    			std::cout << "exisist nan" << endl;
    			std::cout << (itr->histogram)[i] << endl;
    			hadNan = true;
    			break;
    		}
    		if (0 != (itr->histogram)[i]) {
    			allzero = false;
    			break;
    		}
    
    	}
    	if (!hadNan && !allzero)
    	{
    		std::cout << "good cloud" << endl;
    		tempSource->push_back(*itr);
    	}
    
    }
    std::cout << "tempSource cloud size:" << static_cast<int> (tempSource->size()) << endl;
    
    source->clear();
    std::cout << "source cloud size:" << static_cast<int> (source->size()) << endl;
    //(源,目标)
    pcl::copyPointCloud(*tempSource, *source);
    std::cout << "source cloud size:" << static_cast<int> (source->size()) << endl;
    printf("inf2//////////////////////////////");
    
    //printf("inf3//////////////////////////////");
    std::cout << "target cloud size:" << static_cast<int> (target->size()) << endl;
    typename pcl::PointCloud<pcl::FPFHSignature33>::Ptr tempSource2(new pcl::PointCloud<pcl::FPFHSignature33>);
    for (itr = target->begin(); itr != target->end(); itr++)
    {
    	std::cout << *itr << endl;
    	auto hadNan = false; //是否有nan点
    	auto allzero = true; //是否全零
    	for (auto i = 0; i < 33; i++)
    	{
    		//std::cout << (itr->histogram)[i] << endl;
    		if (pcl_isnan((itr->histogram)[i]))
    		{
    			std::cout << "exisist nan" << endl;
    			std::cout << (itr->histogram)[i] << endl;
    			hadNan = true;
    			break;
    		}
    		if (0 != (itr->histogram)[i]) {
    			allzero = false;
    			break;
    		}
    
    	}
    	if (!hadNan && !allzero)
    	{
    		std::cout << "good cloud" << endl;
    		tempSource2->push_back(*itr);
    	}
    
    }
    std::cout << "tempSource2 cloud size:" << static_cast<int> (tempSource2->size()) << endl;
    
    target->clear();
    std::cout << "target cloud size:" << static_cast<int> (target->size()) << endl;
    //(源,目标)
    pcl::copyPointCloud(*tempSource2, *target);
    std::cout << "target cloud size:" << static_cast<int> (target->size()) << endl;
    //printf("inf4//////////////////////////////");
    
    
    correspondences.resize(source->size());
    
    
    // Use a KdTree to search for the nearest matches in feature space
    pcl::KdTreeFLANN<pcl::FPFHSignature33> descriptor_kdtree;
    descriptor_kdtree.setInputCloud(target);
    
    // Find the index of the best match for each keypoint, and store it in "correspondences_out"
    const int k = 1;
    std::vector<int> k_indices(k);
    std::vector<float> k_squared_distances(k);
    
    
    for (int i = 0; i < static_cast<int> (source->size()); ++i)
    {
    	descriptor_kdtree.nearestKSearch(*source, i, k, k_indices, k_squared_distances);
    	correspondences[i] = k_indices[0];
    }
    std::cout << "OK" << std::endl;
    }
    

    上述方法剔除了点云中的nan特征和描述子为全0的特征。

posted @ 2020-04-14 04:32  ProcoRosso  阅读(2229)  评论(0编辑  收藏  举报