redisson分布式锁原理剖析
redisson分布式锁原理剖析
相信使用过redis的,或者正在做分布式开发的童鞋都知道redisson组件,它的功能很多,但我们使用最频繁的应该还是它的分布式锁功能,少量的代码,却实现了加锁、锁续命(看门狗)、锁订阅、解锁、锁等待(自旋)等功能,我们来看看都是如何实现的。
加锁
//获取锁对象
RLock redissonLock = redisson.getLock(lockKey);
//加分布式锁
redissonLock.lock();
根据redissonLock.lock()
方法跟踪到具体的private <T> RFuture<Long> tryAcquireAsync(long leaseTime, TimeUnit unit, final long threadId)
方法,真正获取加锁的逻辑是在tryAcquireAsync
该方法中调用的tryLockInnerAsync()
方法,看看这个方法是怎么实现的?
<T> RFuture<T> tryLockInnerAsync(long leaseTime, TimeUnit unit, long threadId, RedisStrictCommand<T> command) {
internalLockLeaseTime = unit.toMillis(leaseTime);
return commandExecutor.evalWriteAsync(getName(), LongCodec.INSTANCE, command,
// 判断是否存在分布式锁,getName()也就是KEYS[1],也就是锁key名
"if (redis.call('exists', KEYS[1]) == 0) then " +
// 加锁,执行hset 锁key名 1
"redis.call('hset', KEYS[1], ARGV[2], 1); " +
// 设置过期时间
"redis.call('pexpire', KEYS[1], ARGV[1]); " +
"return nil; " +
"end; " +
// 这个分支是redisson的重入锁逻辑,锁还在,锁计数+1,重新设置过期时长
"if (redis.call('hexists', KEYS[1], ARGV[2]) == 1) then " +
"redis.call('hincrby', KEYS[1], ARGV[2], 1); " +
"redis.call('pexpire', KEYS[1], ARGV[1]); " +
"return nil; " +
"end; " +
// 返回锁的剩余过期时长
"return redis.call('pttl', KEYS[1]);",
Collections.<Object>singletonList(getName()), internalLockLeaseTime, getLockName(threadId));
}
发现底层是结合lua脚本实现了加锁逻辑。
为什么底层结合了Lua脚本?
Redis是在2.6推出了脚本功能,允许开发者使用Lua语言编写脚本传到redis执行。使用脚本的好处如下:
1、减少网络开销:本来5次网络请求的操作,可以用一个请求完成,原先5次请求的逻辑,可以一次性放到redis中执行,较少了网络往返时延。这点跟管道有点类似。
2、原子操作:Redis会将整个脚本作为一个整体执行,中间不会被其他命令插入。管道不是原子的,不过
redis的批量操作命令(类似mset)是原子的。
也就意味着虽然脚本中有多条redis指令,那即使有多条线程并发执行,在同一时刻也只有一个线程能够执行这段逻辑,等这段逻辑执行完,分布式锁也就获取到了,其它线程再进来就获取不到分布式锁了。
锁续命(自旋)
大家都听过锁续命,肯定也知道这里涉及到看门狗的概念。在调用tryLockInnerAsync()
方法时,第一个参数是commandExecutor.getConnectionManager().getCfg().getLockWatchdogTimeout()
也就是默认的看门狗过期时间是private long lockWatchdogTimeout = 30 * 1000
毫秒。
private <T> RFuture<Long> tryAcquireAsync(long leaseTime, TimeUnit unit, final long threadId) {
if (leaseTime != -1) {
return tryLockInnerAsync(leaseTime, unit, threadId, RedisCommands.EVAL_LONG);
}
RFuture<Long> ttlRemainingFuture = tryLockInnerAsync(commandExecutor.getConnectionManager().getCfg().getLockWatchdogTimeout(), TimeUnit.MILLISECONDS, threadId, RedisCommands.EVAL_LONG);
// 添加监听器,判断获取锁是否成功,成功的话,添加定时任务:定期更新锁过期时间
ttlRemainingFuture.addListener(new FutureListener<Long>() {
@Override
public void operationComplete(Future<Long> future) throws Exception {
if (!future.isSuccess()) {
return;
}
// 根据tryLockInnerAsync方法,加锁成功,return nil 也就是null
Long ttlRemaining = future.getNow();
// lock acquired
if (ttlRemaining == null) {
// 添加定时任务:定期更新锁过期时间
scheduleExpirationRenewal(threadId);
}
}
});
return ttlRemainingFuture;
}
当线程获取到锁后,会进入if (ttlRemaining == null)
分支,调用定期更新锁过期时间scheduleExpirationRenewal
方法,我们看看该方法实现:
private void scheduleExpirationRenewal(final long threadId) {
if (expirationRenewalMap.containsKey(getEntryName())) {
return;
}
Timeout task = commandExecutor.getConnectionManager().newTimeout(new TimerTask() {
@Override
public void run(Timeout timeout) throws Exception {
RFuture<Boolean> future = commandExecutor.evalWriteAsync(getName(), LongCodec.INSTANCE, RedisCommands.EVAL_BOOLEAN,
// 检测KEYS[1]锁是否还在,在的话再次设置过期时间
"if (redis.call('hexists', KEYS[1], ARGV[2]) == 1) then " +
"redis.call('pexpire', KEYS[1], ARGV[1]); " +
"return 1; " +
"end; " +
"return 0;",
Collections.<Object>singletonList(getName()), internalLockLeaseTime, getLockName(threadId));
future.addListener(new FutureListener<Boolean>() {
@Override
public void operationComplete(Future<Boolean> future) throws Exception {
expirationRenewalMap.remove(getEntryName());
if (!future.isSuccess()) {
log.error("Can't update lock " + getName() + " expiration", future.cause());
return;
}
// 通过上面lua脚本执行后会返回1,也就true,再次调用更新过期时间进行续期
if (future.getNow()) {
// reschedule itself
scheduleExpirationRenewal(threadId);
}
}
});
}
// 延迟 internalLockLeaseTime / 3再执行续命
}, internalLockLeaseTime / 3, TimeUnit.MILLISECONDS);
if (expirationRenewalMap.putIfAbsent(getEntryName(), task) != null) {
task.cancel();
}
}
发现scheduleExpirationRenewal
方法只是用了Timeout作为任务,并没有使用java的Timer()之类的定时器,而是在Timeout任务run()方法中定义了RFuture对象,通过给RFuture对象设置listener,在listener中通过Lua脚本执行结果进行判断是否还需要进行续期。通过这样的方式来给分布式锁进行续期。
这种方式实现定时更新确实很巧妙,定期时间很灵活。
锁订阅及锁等待
锁订阅是针对那些没有获取到分布式锁的线程而言的。来看看整个获取锁的方法:
public void lockInterruptibly(long leaseTime, TimeUnit unit) throws InterruptedException {
long threadId = Thread.currentThread().getId();
Long ttl = tryAcquire(leaseTime, unit, threadId);
// lock acquired,获取到锁,直接退出
if (ttl == null) {
return;
}
// 没有获取到锁,进行订阅
RFuture<RedissonLockEntry> future = subscribe(threadId);
commandExecutor.syncSubscription(future);
try {
while (true) {
ttl = tryAcquire(leaseTime, unit, threadId);
// lock acquired
if (ttl == null) {
break;
}
// waiting for message
if (ttl >= 0) {
getEntry(threadId).getLatch().tryAcquire(ttl, TimeUnit.MILLISECONDS);
} else {
getEntry(threadId).getLatch().acquire();
}
}
} finally {
unsubscribe(future, threadId);
}
// get(lockAsync(leaseTime, unit));
}
当第一个线程获取到锁后,会在if (ttl == null)
分支进行返回,第二个及以后的线程进来在没获取到锁时,只能接着走下面的逻辑,进行锁的订阅。
接着进入到一个while循环,首先还是会进行一次尝试获取锁(万一此时第一个线程已经释放锁了呢),通过tryAcquire(leaseTime, unit, threadId)
方法,如果没有获取到锁的话,会返回锁的剩余过期时间,如果剩余过期时间大于0,则当前线程通过Semaphore
信号号,将当前线程阻塞,底层执行LockSupport.parkNanos(this, nanosTimeout)
线程挂起剩余过期时间后,会自动进行唤醒,再次执行tryAcquire
尝试获取锁。所有没有获取到锁的线程都会执行这个流程。
一定要等待剩余过期时间后才唤醒吗?
假设线程一获取到锁,过期时间默认为30s,当前执行业务逻辑已经过了5s,那其他线程走到这里,则需要等待25s后才行进行唤醒,那万一线程一执行业务逻辑只要10s,那其他线程还需要等待20s吗?这样岂不是导致效率很低?
答案是否定的,详细看解锁逻辑。
解锁
解锁:redissonLock.unlock();
我们来看看具体的解锁逻辑:
protected RFuture<Boolean> unlockInnerAsync(long threadId) {
return commandExecutor.evalWriteAsync(getName(), LongCodec.INSTANCE, RedisCommands.EVAL_BOOLEAN,
// 锁不存在,发布unlockMessage解锁消息,通知其他等待线程
"if (redis.call('exists', KEYS[1]) == 0) then " +
"redis.call('publish', KEYS[2], ARGV[1]); " +
"return 1; " +
"end;" +
// 不存在该锁,异常捕捉
"if (redis.call('hexists', KEYS[1], ARGV[3]) == 0) then " +
"return nil;" +
"end; " +
// redisson可重入锁计数-1,依旧>0,则重新设置过期时间
"local counter = redis.call('hincrby', KEYS[1], ARGV[3], -1); " +
"if (counter > 0) then " +
"redis.call('pexpire', KEYS[1], ARGV[2]); " +
"return 0; " +
// redis删除锁,发布unlockMessage解锁消息,通知其他等待线程
"else " +
"redis.call('del', KEYS[1]); " +
"redis.call('publish', KEYS[2], ARGV[1]); " +
"return 1; "+
"end; " +
"return nil;",
Arrays.<Object>asList(getName(), getChannelName()), LockPubSub.unlockMessage, internalLockLeaseTime, getLockName(threadId));
}
发现解锁逻辑底层也是用了一个lua脚本实现。具体的说明可以看代码注释,删除锁后,并发布解锁消息,通知到其它线程,也就意味着不会其它等待的线程一直等待。
Semophore
信号量的订阅中有个onMessage
方法,
protected void onMessage(RedissonLockEntry value, Long message) {
// 唤醒线程
value.getLatch().release(message.intValue());
while (true) {
Runnable runnableToExecute = null;
synchronized (value) {
Runnable runnable = value.getListeners().poll();
if (runnable != null) {
if (value.getLatch().tryAcquire()) {
runnableToExecute = runnable;
} else {
value.addListener(runnable);
}
}
}
if (runnableToExecute != null) {
runnableToExecute.run();
} else {
return;
}
}
}
解锁后通过if (opStatus)
分支取消锁续期逻辑。
总结:
总的来说,可以借助一张图加深理解:
分布式锁的整体实现很巧妙,借助lua脚本的原子性,实现了很多功能,当然redisson还有其它很多功能,比如为了解决主从集群中的异步复制会导致锁丢失问题,引入了redlock机制,还有分布式下的可重入锁等。