stream流操作

如何创建 Stream 对象

1.从集合创建:我们可以通过调用集合的 stream() 方法来创建一个 Stream 对象。例如:

List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);
Stream<Integer> stream = numbers.stream();

2.从数组创建:Java 8 引入了 Arrays 类的 stream() 方法,我们可以使用它来创建一个 Stream 对象。例如:

String[] names = {"Alice", "Bob", "Carol"};
Stream<String> stream = Arrays.stream(names);

3.通过 Stream.of() 创建:我们可以使用 Stream.of() 方法直接将一组元素转换为 Stream 对象。例如:

Stream<Integer> stream = Stream.of(1, 2, 3, 4, 5);

4.通过 Stream.builder() 创建:如果我们不确定要添加多少个元素到 Stream 中,可以使用 Stream.builder() 创建一个 Stream.Builder 对象,并使用其 add() 方法来逐个添加元素,最后调用 build() 方法生成 Stream 对象。例如:

Stream.Builder<String> builder = Stream.builder();
builder.add("Apple");
builder.add("Banana");
builder.add("Cherry");
Stream<String> stream = builder.build();

5.从 I/O 资源创建:Java 8 引入了一些新的 I/O 类(如 BufferedReaderFiles 等),它们提供了很多方法来读取文件、网络流等数据。这些方法通常返回一个 Stream 对象,可以直接使用。例如:

Path path = Paths.get("data.txt");
try (Stream<String> stream = Files.lines(path)) {
    // 使用 stream 处理数据
} catch (IOException e) {
    e.printStackTrace();
}

6.通过生成器创建:除了从现有的数据源创建 Stream,我们还可以使用生成器来生成元素。Java 8 中提供了 Stream.generate() 方法和 Stream.iterate() 方法来创建无限 Stream。例如:

Stream<Integer> stream = Stream.generate(() -> 0); // 创建一个无限流,每个元素都是 0
Stream<Integer> stream = Stream.iterate(0, n -> n + 1); // 创建一个无限流,从 0 开始递增

需要注意的是,Stream 对象是一种一次性使用的对象,它只能被消费一次。一旦对 Stream 执行了终止操作(如收集结果、遍历元素),Stream 就会被关闭,后续无法再使用。因此,在使用 Stream 时,需要根据需要重新创建新的 Stream 对象。

常用的 Stream 操作方法

1.过滤(Filter): filter() 方法接受一个 Predicate 函数作为参数,用于过滤 Stream 中的元素。只有满足 Predicate 条件的元素会被保留下来。例如:

Stream<Integer> stream = Stream.of(1, 2, 3, 4, 5);
Stream<Integer> filteredStream = stream.filter(n -> n % 2 == 0); // 过滤出偶数

2.映射(Map): map() 方法接受一个 Function 函数作为参数,用于对 Stream 中的元素进行映射转换。对每个元素应用函数后的结果会构成一个新的 Stream。例如:

Stream<String> stream = Stream.of("apple", "banana", "cherry");
Stream<Integer> mappedStream = stream.map(s -> s.length()); // 映射为单词长度

3.扁平映射(FlatMap): flatMap() 方法类似于 map() 方法,不同之处在于它可以将每个元素映射为一个流,并将所有流连接成一个流。这主要用于解决嵌套集合的情况。例如:

List<List<Integer>> nestedList = Arrays.asList(
    Arrays.asList(1, 2),
    Arrays.asList(3, 4),
    Arrays.asList(5, 6)
);
Stream<Integer> flattenedStream = nestedList.stream().flatMap(List::stream); // 扁平化为一个流

4.截断(Limit): limit() 方法可以限制 Stream 的大小,只保留前 n 个元素。

  1. limit(n): 保留流中的前n个元素,返回一个包含最多n个元素的新流。如果流中元素少于n个,则返回原始流。

  2. skip(n): 跳过流中的前n个元素,返回一个包含剩余元素的新流。如果流中元素少于n个,则返回一个空流。

例如:

Stream<Integer> stream = Stream.of(1, 2, 3, 4, 5);
Stream<Integer> limitedStream = stream.limit(3); // 只保留前 3 个元素

Stream<Integer> stream = Stream.of(1, 2, 3, 4, 5);
Stream<Integer> skippedStream = stream.skip(2);
skippedStream.forEach(System.out::println); // 输出结果: 3 4 5

5.跳过(Skip): skip() 方法可以跳过 Stream 中的前 n 个元素,返回剩下的元素组成的新 Stream。例如:

Stream<Integer> stream = Stream.of(1, 2, 3, 4, 5);
Stream<Integer> skippedStream = stream.skip(2); // 跳过前 2 个元素

6.排序(Sorted): sorted() 方法用于对 Stream 中的元素进行排序,默认是自然顺序排序。还可以提供自定义的 Comparator 参数来指定排序规则。例如:

Stream<Integer> stream = Stream.of(5, 2, 4, 1, 3);
Stream<Integer> sortedStream = stream.sorted(); // 自然顺序排序

7.去重(Distinct): distinct() 方法用于去除 Stream 中的重复元素,根据元素的 equals() 和 hashCode() 方法来判断是否重复。例如:

Stream<Integer> stream = Stream.of(1, 2, 2, 3, 3, 3);
Stream<Integer> distinctStream = stream.distinct(); // 去重

8.汇总(Collect): collect() 方法用于将 Stream 中的元素收集到结果容器中,如 List、Set、Map 等。可以使用预定义的 Collectors 类提供的工厂方法来创建收集器,也可以自定义收集器。例如:

Stream<String> stream = Stream.of("apple", "banana", "cherry");
List<String> collectedList = stream.collect(Collectors.toList()); // 收集为 List

9.归约(Reduce): reduce() 方法用于将 Stream 中的元素依次进行二元操作,得到一个最终的结果。它接受一个初始值和一个 BinaryOperator 函数作为参数。例如:

Stream<Integer> stream = Stream.of(1, 2, 3, 4, 5);
Optional<Integer> sum = stream.reduce((a, b) -> a + b); // 对所有元素求和

10.统计(Summary Statistics): summaryStatistics() 方法可以从 Stream 中获取一些常用的统计信息,如元素个数、最小值、最大值、总和和平均值。例如:

IntStream stream = IntStream.of(1, 2, 3, 4, 5);
IntSummaryStatistics stats = stream.summaryStatistics();
System.out.println("Count: " + stats.getCount());
System.out.println("Min: " + stats.getMin());
System.out.println("Max: " + stats.getMax());
System.out.println("Sum: " + stats.getSum());
System.out.println("Average: " + stats.getAverage());

以上只是 Stream API 提供的一部分常用操作方法,还有许多其他操作方法,如匹配(Match)、查找(Find)、遍历(ForEach)等

Stream 的中间操作

forEach 和 peek

forEach和peek都是Stream API中用于遍历流中元素的操作方法,它们在处理流的过程中提供了不同的功能和使用场景。

  1. forEach: forEach是一个终端操作方法,它接受一个Consumer函数作为参数,对流中的每个元素执行该函数。它没有返回值,因此无法将操作结果传递给后续操作。forEach会遍历整个流,对每个元素执行相同的操作。

示例代码:

List<String> names = Arrays.asList("Alice", "Bob", "Charlie");
names.stream()
     .forEach(System.out::println);

这个示例中,我们创建了一个包含字符串的List,并通过stream()方法将其转换为流。然后使用forEach方法遍历输出每个元素的值。

  1. peek: peek是一个中间操作方法,它接受一个Consumer函数作为参数,对流中的每个元素执行该函数。与forEach不同的是,peek方法会返回一个新的流,该流中的元素和原始流中的元素相同。

示例代码:

List<String> names = Arrays.asList("Alice", "Bob", "Charlie");
List<String> upperCaseNames = names.stream()
                                   .map(String::toUpperCase)
                                   .peek(System.out::println)
                                   .collect(Collectors.toList());

在这个示例中,我们首先将List转换为流,并通过map方法将每个元素转换为大写字母。然后使用peek方法在转换之前输出每个元素的值。最后通过collect方法将元素收集到一个新的List中。

需要注意的是,无论是forEach还是peek,它们都是用于在流的处理过程中执行操作。区别在于forEach是终端操作,不返回任何结果,而peek是中间操作,可以和其他操作方法进行组合和链式调用。

根据使用场景和需求,选择使用forEach或peek来遍历流中的元素。如果只是需要遍历输出元素,不需要操作结果,则使用forEach。如果需要在遍历过程中执行一些其他操作,并将元素传递给后续操作,则使用peek。

聚合操作(reduce 和 collect)

reduce和collect都是Stream API中用于聚合操作的方法,它们可以将流中的元素进行汇总、计算和收集。

  1. reduce: reduce是一个终端操作方法,它接受一个BinaryOperator函数作为参数,对流中的元素逐个进行合并操作,最终得到一个结果。该方法会将流中的第一个元素作为初始值,然后将初始值与下一个元素传递给BinaryOperator函数进行计算,得到的结果再与下一个元素进行计算,以此类推,直到遍历完所有元素。

示例代码:

List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);
Optional<Integer> sum = numbers.stream()
                               .reduce((a, b) -> a + b);
sum.ifPresent(System.out::println); // 输出结果: 15

在这个示例中,我们创建了一个包含整数的List,并通过stream()方法将其转换为流。然后使用reduce方法对流中的元素进行求和操作,将每个元素依次相加,得到结果15。

  1. collect: collect是一个终端操作方法,它接受一个Collector接口的实现作为参数,对流中的元素进行收集和汇总的操作。Collector接口定义了一系列用于聚合操作的方法,例如收集元素到List、Set、Map等容器中,或进行字符串连接、分组、计数等操作。

示例代码:

List<String> names = Arrays.asList("Alice", "Bob", "Charlie");
String joinedNames = names.stream()
                          .collect(Collectors.joining(", "));
System.out.println(joinedNames); // 输出结果: Alice, Bob, Charlie

在这个示例中,我们创建了一个包含字符串的List,并通过stream()方法将其转换为流。然后使用collect方法将流中的元素连接成一个字符串,每个元素之间使用逗号和空格分隔。

需要注意的是,reduce和collect都是终端操作,它们都会触发流的遍历和处理。不同的是,reduce方法用于对流中的元素进行累积计算,得到一个最终结果;而collect方法用于对流中的元素进行收集和汇总,得到一个容器或其他自定义的结果。

在选择使用reduce还是collect时,可以根据具体需求和操作类型来决定。如果需要对流中的元素进行某种计算和合并操作,得到一个结果,则使用reduce。如果需要将流中的元素收集到一个容器中,进行汇总、分组、计数等操作,则使用collect。

匹配操作(allMatch、anyMatch 和 noneMatch)

在 Stream API 中,allMatch、anyMatch 和 noneMatch 是用于进行匹配操作的方法,它们可以用来检查流中的元素是否满足特定的条件。

  1. allMatch: allMatch 方法用于判断流中的所有元素是否都满足给定的条件。当流中的所有元素都满足条件时,返回 true;如果存在一个元素不满足条件,则返回 false。

示例代码:

List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);
boolean allEven = numbers.stream()
                         .allMatch(n -> n % 2 == 0);
System.out.println(allEven); // 输出结果: false

在这个示例中,我们创建了一个包含整数的 List,并通过 stream() 方法将其转换为流。然后使用 allMatch 方法判断流中的元素是否都是偶数。由于列表中存在奇数,所以返回 false。

  1. anyMatch: anyMatch 方法用于判断流中是否存在至少一个元素满足给定的条件。当流中至少有一个元素满足条件时,返回 true;如果没有元素满足条件,则返回 false。

示例代码:

List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);
boolean hasEven = numbers.stream()
                         .anyMatch(n -> n % 2 == 0);
System.out.println(hasEven); // 输出结果: true

在这个示例中,我们创建了一个包含整数的 List,并通过 stream() 方法将其转换为流。然后使用 anyMatch 方法判断流中是否存在偶数。由于列表中存在偶数,所以返回 true。

  1. noneMatch: noneMatch 方法用于判断流中的所有元素是否都不满足给定的条件。当流中没有元素满足条件时,返回 true;如果存在一个元素满足条件,则返回 false。

示例代码:

List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);
boolean noneNegative = numbers.stream()
                             .noneMatch(n -> n < 0);
System.out.println(noneNegative); // 输出结果: true

在这个示例中,我们创建了一个包含整数的 List,并通过 stream() 方法将其转换为流。然后使用 noneMatch 方法判断流中的元素是否都是非负数。由于列表中的元素都是非负数,所以返回 true。

需要注意的是,allMatch、anyMatch 和 noneMatch 都是终端操作,它们会遍历流中的元素直到满足条件或处理完所有元素。在性能上,allMatch 和 noneMatch 在第一个不匹配的元素处可以立即返回结果,而 anyMatch 在找到第一个匹配的元素时就可以返回结果。

查找操作(findFirst 和 findAny)

在 Stream API 中,findFirst 和 findAny 是用于查找操作的方法,它们可以用来从流中获取满足特定条件的元素。

  1. findFirst: findFirst 方法用于返回流中的第一个元素。它返回一个 Optional 对象,如果流为空,则返回一个空的 Optional;如果流非空,则返回流中的第一个元素的 Optional。

示例代码:

List<String> names = Arrays.asList("Alice", "Bob", "Charlie");
Optional<String> first = names.stream()
                              .findFirst();
first.ifPresent(System.out::println); // 输出结果: Alice

在这个示例中,我们创建了一个包含字符串的 List,并通过 stream() 方法将其转换为流。然后使用 findFirst 方法获取流中的第一个元素,并使用 ifPresent 方法判断 Optional 是否包含值,并进行相应的处理。

  1. findAny: findAny 方法用于返回流中的任意一个元素。它返回一个 Optional 对象,如果流为空,则返回一个空的 Optional;如果流非空,则返回流中的任意一个元素的 Optional。在顺序流中,通常会返回第一个元素;而在并行流中,由于多线程的处理,可能返回不同的元素。

示例代码:

List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);
Optional<Integer> any = numbers.stream()
                               .filter(n -> n % 2 == 0)
                               .findAny();
any.ifPresent(System.out::println); // 输出结果: 2 或 4(取决于并行处理的结果)

在这个示例中,我们创建了一个包含整数的 List,并通过 stream() 方法将其转换为流。然后使用 filter 方法筛选出偶数,再使用 findAny 方法获取任意一个偶数,最后使用 ifPresent 方法判断 Optional 是否包含值,并进行相应的处理。

需要注意的是,findAny 在并行流中会更有优势,因为在多线程处理时,可以返回最先找到的元素,提高效率。而在顺序流中,findAny 的性能与 findFirst 相当。

统计操作(count、max 和 min)

在 Stream API 中,count、max 和 min 是用于统计操作的方法,它们可以用来获取流中元素的数量、最大值和最小值。

  1. count: count 方法用于返回流中元素的数量。它返回一个 long 类型的值,表示流中的元素个数。

示例代码:

List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);
long count = numbers.stream()
                    .count();
System.out.println(count); // 输出结果: 5

在这个示例中,我们创建了一个包含整数的 List,并通过 stream() 方法将其转换为流。然后使用 count 方法获取流中元素的数量,并将结果输出。

  1. max:  max 方法用于返回流中的最大值。它返回一个 Optional 对象,如果流为空,则返回一个空的 Optional;如果流非空,则返回流中的最大值的 Optional。

示例代码:

List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);
Optional<Integer> max = numbers.stream()
                               .max(Integer::compareTo);
max.ifPresent(System.out::println); // 输出结果: 5

在这个示例中,我们创建了一个包含整数的 List,并通过 stream() 方法将其转换为流。然后使用 max 方法获取流中的最大值,并使用 ifPresent 方法判断 Optional 是否包含值,并进行相应的处理。

  1. min:  min 方法用于返回流中的最小值。它返回一个 Optional 对象,如果流为空,则返回一个空的 Optional;如果流非空,则返回流中的最小值的 Optional。

示例代码:

List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);
Optional<Integer> min = numbers.stream()
                               .min(Integer::compareTo);
min.ifPresent(System.out::println); // 输出结果: 1

在这个示例中,我们创建了一个包含整数的 List,并通过 stream() 方法将其转换为流。然后使用 min 方法获取流中的最小值,并使用 ifPresent 方法判断 Optional 是否包含值,并进行相应的处理。

这些统计操作方法提供了一种便捷的方式来对流中的元素进行数量、最大值和最小值的计算。通过返回 Optional 对象,可以避免空指针异常。

并行流

什么是并行流

并行流是 Java 8 Stream API 中的一个特性。它可以将一个流的操作在多个线程上并行执行,以提高处理大量数据时的性能。

在传统的顺序流中,所有的操作都是在单个线程上按照顺序执行的。而并行流则会将流的元素分成多个小块,并在多个线程上并行处理这些小块,最后将结果合并起来。这样可以充分利用多核处理器的优势,加快数据处理的速度。

要将一个顺序流转换为并行流,只需调用流的 parallel() 方法即可。示例代码如下所示:

List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);
numbers.stream()
       .parallel()
       .forEach(System.out::println);

在这个示例中,我们创建了一个包含整数的 List,并通过 stream() 方法将其转换为流。接着调用 parallel() 方法将流转换为并行流,然后使用 forEach 方法遍历流中的元素并输出。

需要注意的是,并行流的使用并不总是适合所有情况。并行流的优势主要体现在数据量较大、处理时间较长的场景下。对于小规模数据和简单的操作,顺序流可能更加高效。在选择使用并行流时,需要根据具体情况进行评估和测试,以确保获得最佳的性能。

此外,还需要注意并行流在某些情况下可能引入线程安全的问题。如果多个线程同时访问共享的可变状态,可能会导致数据竞争和不确定的结果。因此,在处理并行流时,应当避免共享可变状态,或采用适当的同步措施来确保线程安全。

如何使用并行流提高性能

使用并行流可以通过利用多线程并行处理数据,从而提高程序的执行性能。下面是一些使用并行流提高性能的常见方法:

  1. 创建并行流: 要创建一个并行流,只需在普通流上调用 parallel() 方法。
    List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);
    Stream<Integer> parallelStream = numbers.parallelStream();
    1. 利用任务并行性: 并行流会将数据分成多个小块,并在多个线程上并行处理这些小块。这样可以充分利用多核处理器的优势。
List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);
numbers.parallelStream()
       .map(n -> compute(n)) // 在多个线程上并行处理计算
       .forEach(System.out::println);

在这个示例中,使用 map 方法对流中的每个元素进行计算。由于并行流的特性,计算操作会在多个线程上并行执行,提高了计算的效率。

  1. 避免共享可变状态: 在并行流中,多个线程会同时操作数据。如果共享可变状态(如全局变量)可能导致数据竞争和不确定的结果。因此,避免在并行流中使用共享可变状态,或者采取适当的同步措施来确保线程安全。

  2. 使用合适的操作: 一些操作在并行流中的性能表现更好,而另一些操作则可能导致性能下降。一般来说,在并行流中使用基于聚合的操作(如 reducecollect)和无状态转换操作(如 mapfilter)的性能较好,而有状态转换操作(如 sorted)可能会导致性能下降。

    List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);
    
    // good performance
    int sum = numbers.parallelStream()
                     .reduce(0, Integer::sum);
    
    // good performance
    List<Integer> evenNumbers = numbers.parallelStream()
                                       .filter(n -> n % 2 == 0)
                                       .collect(Collectors.toList());
    
    // potential performance degradation
    List<Integer> sortedNumbers = numbers.parallelStream()
                                         .sorted()
                                         .collect(Collectors.toList());

    在这个示例中,reduce 和 filter 的操作在并行流中具有良好的性能,而 sorted 操作可能导致性能下降。

    除了上述方法,还应根据具体情况进行评估和测试,并行流是否能够提高性能。有时候,并行流的开销(如线程的创建和销毁、数据切割和合并等)可能超过了其带来的性能提升。因此,在选择使用并行流时,应该根据数据量和操作复杂度等因素进行综合考虑,以确保获得最佳的性能提升。




posted on 2023-03-17 15:42  五官一体即忢  阅读(21)  评论(0编辑  收藏  举报

导航