浅析简单的时间片轮转多道程序内核代码

学号后三位<126>

原创作品转载请注明出处https://github.com/mengning/linuxkernel/

 

一、编译mykernel并使用qemu运行

1 cd LinuxKernel/linux-3.9.4
2 rm -rf mykernel
3 patch -p1 < ../mykernel_for_linux3.9.4sc.patch  
4 make allnoconfig
5 make  
6 qemu -kernel arch/x86/boot/bzImage

 

二、代码分析

 

  关于 myinterrupt.c 和 mymain.c

 

由分析可知,qemu中交替出现的输出是有上面两个c文件输出的,也就是说通过修改输出内容就可以定制自己的输出了

 

关于mypcb.h

#define MAX_TASK_NUM        4
#define KERNEL_STACK_SIZE   1024*2 
/* CPU-specific state of this task */
struct Thread {
    unsigned long       ip;
    unsigned long       sp;
};
typedef struct PCB{
    int pid;
    volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
    unsigned long stack[KERNEL_STACK_SIZE];
    /* CPU-specific state of this task */
    struct Thread thread;
    unsigned long   task_entry;
    struct PCB *next;
}tPCB;

Thread结构体中定义了一个储存指令位置和栈顶位置,PCB结构体中储存了进程id,状态,入口位置,下个PCB指纹等必要的信息

 

关于mymain.c

/*
 *  linux/mykernel/mymain.c
 *




* Kernel internal my_start_kernel * * Copyright (C) 2013 Mengning *
*/ #include <linux/types.h> #include <linux/string.h> #include <linux/ctype.h> #include <linux/tty.h> #include <linux/vmalloc.h> #include "mypcb.h" tPCB task[MAX_TASK_NUM]; tPCB * my_current_task = NULL; volatile int my_need_sched = 0; void my_process(void); void __init my_start_kernel(void) { int pid = 0; int i; /* Initialize process 0*/ task[pid].pid = pid; task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */ task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process; task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1]; task[pid].next = &task[pid]; /*fork more process */ for(i=1;i<MAX_TASK_NUM;i++) { memcpy(&task[i],&task[0],sizeof(tPCB)); task[i].pid = i; //*(&task[i].stack[KERNEL_STACK_SIZE-1] - 1) = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1]; task[i].thread.sp = (unsigned long)(&task[i].stack[KERNEL_STACK_SIZE-1]); task[i].next = task[i-1].next; task[i-1].next = &task[i]; } /* start process 0 by task[0] */ pid = 0; my_current_task = &task[pid]; asm volatile( "movl %1,%%esp\n\t" /* set task[pid].thread.sp to esp */ "pushl %1\n\t" /* push ebp */ "pushl %0\n\t" /* push task[pid].thread.ip */ "ret\n\t" /* pop task[pid].thread.ip to eip */ : : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp) /* input c or d mean %ecx/%edx*/ ); } int i = 0; void my_process(void) { while(1) { i++; if(i%10000000 == 0) { printk(KERN_NOTICE "this is process %d -\n",my_current_task->pid); if(my_need_sched == 1) { my_need_sched = 0; my_schedule(); } printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid); } } }

首先初始化了一个pid为0的进程,作为内核中的第一个进程, 操作系统在初始化时只有一个0号进程,之后的所有进程都由该进程fork而来

 

关于myinterrupt.c

/*
 *  linux/mykernel/myinterrupt.c
 *
 *  Kernel internal my_timer_handler
 *
 *  Copyright (C) 2013  Mengning
 *
 */
#include <linux/types.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/tty.h>
#include <linux/vmalloc.h>

#include "mypcb.h"

extern tPCB task[MAX_TASK_NUM];
extern tPCB * my_current_task;
extern volatile int my_need_sched;
volatile int time_count = 0;

/*
 * Called by timer interrupt.
 * it runs in the name of current running process,
 * so it use kernel stack of current running process
 */
void my_timer_handler(void)
{
#if 1
    if(time_count%1000 == 0 && my_need_sched != 1)
    {
        printk(KERN_NOTICE ">>>my_timer_handler here<<<\n");
        my_need_sched = 1;
    } 
    time_count ++ ;  
#endif
    return;      
}

void my_schedule(void)
{
    tPCB * next;
    tPCB * prev;

    if(my_current_task == NULL 
        || my_current_task->next == NULL)
    {
        return;
    }
    printk(KERN_NOTICE ">>>my_schedule<<<\n");
    /* schedule */
    next = my_current_task->next;
    prev = my_current_task;
    if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */
    {        
        my_current_task = next; 
        printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);  
        /* switch to next process */
        asm volatile(    
            "pushl %%ebp\n\t"         /* save ebp */
            "movl %%esp,%0\n\t"     /* save esp */
            "movl %2,%%esp\n\t"     /* restore  esp */
            "movl $1f,%1\n\t"       /* save eip */    
            "pushl %3\n\t" 
            "ret\n\t"                 /* restore  eip */
            "1:\t"                  /* next process start here */
            "popl %%ebp\n\t"
            : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
            : "m" (next->thread.sp),"m" (next->thread.ip)
        ); 
    }  
    return;    
}

文件中有两个函数,一个用来响应时钟中断,一个用来处理进程切换

 

三、实验总结

在操作系统中,通过进程中断,储存现场再载入其他进程的现场运行之,并在后面再恢复原来进程的现场就实现进程的并发执行,也正是这样,我们日常生活中才能一边听歌一边刷着手机或开着ide写代码,好像这些程序都是同时运行,但在这次实验中才能深深理解到这种“同时”是通过中断实现的。

 

posted @ 2019-03-12 16:02  Prinny  阅读(155)  评论(0编辑  收藏  举报