machine-learning-specialization ---- first week optional lab

1. 使用python和numpy实现一个线性回归

要求使用梯度下降法,可视化 l o s s loss loss随着迭代次数的变化曲线

2. 说明

2.1 拟合函数

f w , b ( x ( i ) ) = w x ( i ) + b f_{w,b}(x^{(i)})=wx^{(i)}+b fw,b(x(i))=wx(i)+b

2.2 均方误差损失函数

J ( w , b ) = 1 2 m ∑ i = 0 m − 1 ( f w , b ( x ( i ) ) − y ( i ) ) 2 J(w,b)=\frac{1}{2m}\sum\limits_{i=0}^{m-1}(f_{w,b}(x^{(i)})-y^{(i)})^2 J(w,b)=2m1i=0m1(fw,b(x(i))y(i))2
重复进行:

  • w = w − α ∂ J ( w , b ) ∂ w w=w-\alpha\frac{\partial J(w,b)}{\partial w} w=wαwJ(w,b)
  • b = b − α ∂ J ( w , b ) ∂ b b=b-\alpha\frac{\partial J(w,b)}{\partial b} b=bαbJ(w,b)

2.3 需要实现3个方法

  • 计算梯度
  • 计算损失
  • 梯度下降

3. 代码

3.1 gradient_descent_sln.py

from distutils.command.bdist_wininst import bdist_wininst
import numpy as np
import math
import copy
import matplotlib.pyplot as plt

plt.style.use("deeplearning.mplstyle")
from lab_utils_uni import (plt_house_x,plt_contour_wgrad,
plt_divergence,plt_gradients)

def compute_cost(x,y,w,b):
    """function to calculate the cost"""
    m = x.shape[0]
    cost = 0

    for i in range(m):
        f_wb = w*x[i]+b
        cost = cost + (f_wb - y[i])**2

    total_cost = 1/(2*m)*cost # 根据公式

    return total_cost

def compute_gradient(x,y,w,b):
    """compute the gradient for linear regression\n
    x: (ndarray,(m,)): data,m examples\n
    y: (ndarray,(m,)): target values\n
    w,b (scalar)     : model parameters\n

    return:\n
    dj_dw (scalar)  : the gradient of the cost w.r.t the parameter w\n
    dj_db (scalar)  : the gradient of the cost w.r.t the parameter b\n
    """
    # number of training examples
    m = x.shape[0]
    dj_dw = 0
    dj_db = 0

    for i in range(m):
        f_wb = w * x[i] + b
        dj_dw_i = (f_wb-y[i])*x[i]
        dj_db_i = (f_wb-y[i])
        dj_db +=dj_db_i
        dj_dw +=dj_dw_i

    dj_dw = dj_dw/m
    dj_db = dj_db/m

    return dj_dw,dj_db

def gradient_descent(x,y,w_in,b_in,alpha,num_iters,cost_function,
                    gradient_function):
    w = copy.deepcopy(w_in)
    J_history = [] # 损失值
    p_history = [] # 参数值
    b = b_in
    w = w_in

    for i in range(num_iters):
        dj_dw,dj_db = gradient_function(x,y,w,b)

        # update
        b = b - alpha * dj_db
        w = w - alpha * dj_dw

        # 保存历史损失值
        if i<1e5:
            J_history.append(cost_function(x,y,w,b))
            p_history.append([w,b])

        # 每10个迭代输出一次历史信息
        if i%math.ceil(num_iters/10)==0:
            print(f'Iteration {i:4}: Cost {J_history[-1]:.2e} ',
                f'dj_dw: {dj_dw:.3e}, dj_db: {dj_db:.3e} ',
                f'w: {w:.3e}, b:{b:.5e}')

    return w,b,J_history,p_history        
       


if __name__ == '__main__':
    print("program start".center(60,'='))

    # load dataset
    x_train = np.array([1.0,2.0])
    y_train = np.array([300,500])

    # 显示损失函数
    plt_gradients(x_train,y_train,compute_cost,compute_gradient)
    plt.show()

    # initialize parameters
    w_init = 0
    b_init = 0
    # hyper parameters
    iterations = int(1e5)
    tmp_alpha = 1e-2
    # run it
    w_final,b_final,J_hist,p_hist = gradient_descent(
        x_train,y_train,
        w_init,b_init,tmp_alpha,iterations,
        compute_cost,compute_gradient
    )
    print(f'(w,b) found by gradient descent: ({w_final:8.4f}, {b_final:8.4f})')

    # plot cost vs iterations
    fig,(ax1,ax2) = plt.subplots(1,2,constrained_layout=True,
                        figsize=(12,4))
    ax1.plot(J_hist[:100])
    ax2.plot(1000+np.arange(len(J_hist[1000:])),J_hist[1000:])
    ax1.set_title("cost vs. iterations(start)")
    ax2.set_title("cost vs. iterations(end)")
    ax1.set_ylabel("cost")
    ax2.set_ylabel("cost")
    ax1.set_xlabel("iteration step")
    ax2.set_xlabel("iteration step")
    plt.show()

 

3.2 结果

 

=======================program start========================

Iteration    0: Cost 7.93e+04  dj_dw: -6.500e+02, dj_db: -4.000e+02  w: 6.500e+00, b:4.00000e+00
Iteration 10000: Cost 6.74e-06  dj_dw: -5.215e-04, dj_db: 8.439e-04  w: 2.000e+02, b:1.00012e+02
Iteration 20000: Cost 3.09e-12  dj_dw: -3.532e-07, dj_db: 5.714e-07  w: 2.000e+02, b:1.00000e+02
Iteration 30000: Cost 1.42e-18  dj_dw: -2.393e-10, dj_db: 3.869e-10  w: 2.000e+02, b:1.00000e+02
Iteration 40000: Cost 1.26e-23  dj_dw: -1.421e-12, dj_db: 7.105e-13  w: 2.000e+02, b:1.00000e+02
Iteration 50000: Cost 1.26e-23  dj_dw: -1.421e-12, dj_db: 7.105e-13  w: 2.000e+02, b:1.00000e+02
Iteration 60000: Cost 1.26e-23  dj_dw: -1.421e-12, dj_db: 7.105e-13  w: 2.000e+02, b:1.00000e+02
Iteration 70000: Cost 1.26e-23  dj_dw: -1.421e-12, dj_db: 7.105e-13  w: 2.000e+02, b:1.00000e+02
Iteration 80000: Cost 1.26e-23  dj_dw: -1.421e-12, dj_db: 7.105e-13  w: 2.000e+02, b:1.00000e+02
Iteration 90000: Cost 1.26e-23  dj_dw: -1.421e-12, dj_db: 7.105e-13  w: 2.000e+02, b:1.00000e+02
(w,b) found by gradient descent: (200.0000, 100.0000)
 

 

 
posted @ 2023-03-13 22:00   ̄□ ̄  阅读(173)  评论(0编辑  收藏  举报