Andrew Ng -- machine learning --Logistic Regression --- ex2/吴恩达机器学习ex2

这个项目包含了吴恩达机器学习ex2的python实现,主要知识点为逻辑回归、正则化,题目内容可以查看数据集中的ex2.pdf
代码来自网络(原作者黄广海的github),添加了部分对于题意的中文翻译,以及修改成与习题一致的结构,方便大家理解

另,原来代码中的高次项有些问题,以及缺少作图部分,已经修改补全

其余练习的传送门

 

1 逻辑回归

在训练的初始阶段,我们将要构建一个逻辑回归模型来预测,某个学生是否被大学录取。
设想你是大学相关部分的管理者,想通过申请学生两次测试的评分,来决定他们是否被录取。
现在你拥有之前申请学生的可以用于训练逻辑回归的训练样本集。对于每一个训练样本,你有他们两次测试的评分和最后是被录取的结果。

 

1.1 数据可视化

In [1]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
 
/opt/conda/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.dtype size changed, may indicate binary incompatibility. Expected 96, got 88
  return f(*args, **kwds)
/opt/conda/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.dtype size changed, may indicate binary incompatibility. Expected 96, got 88
  return f(*args, **kwds)
In [2]:
path = '/home/kesci/input/andrew_ml_ex22391/ex2data1.txt'
data = pd.read_csv(path, header=None, names=['Exam 1', 'Exam 2', 'Admitted'])
data.head()
Out[2]:
 
 Exam 1Exam 2Admitted
0 34.623660 78.024693 0
1 30.286711 43.894998 0
2 35.847409 72.902198 0
3 60.182599 86.308552 1
4 79.032736 75.344376 1
In [3]:
positive = data[data['Admitted'].isin([1])]
negative = data[data['Admitted'].isin([0])]

fig, ax = plt.subplots(figsize=(12,8))
ax.scatter(positive['Exam 1'], positive['Exam 2'], s=50, c='b', marker='o', label='Admitted')
ax.scatter(negative['Exam 1'], negative['Exam 2'], s=50, c='r', marker='x', label='Not Admitted')
ax.legend()
ax.set_xlabel('Exam 1 Score')
ax.set_ylabel('Exam 2 Score')
plt.show()
 
 

1.2 实现

 

1.2.1 sigmoid 函数

逻辑回归函数为

hθ=g(θTx)

g代表一个常用的逻辑函数(logistic function)为S形函数(Sigmoid function),公式为:

g(z)=11+e−z


合起来,我们得到逻辑回归模型的假设函数:

hθ(x)=11+e−θTx
In [4]:
# 实现sigmoid函数
def sigmoid(z):
    return 1 / (1 + np.exp(-z))
 

1.2.2 代价函数和梯度

代价函数:

J(θ)=1m∑i=1m[−y(i)log⁡(hθ(x(i)))−(1−y(i))log⁡(1−hθ(x(i)))]


梯度:

∂J(θ)∂θj=1m∑i=1m(hθ(x(i))−y(i))xj(i)


虽然这个梯度和前面线性回归的梯度很像,但是要记住$h_\theta(x)$是不一样的
实现完成后,用初始$\theta$代入计算,结果应该是0.693左右

In [5]:
# 实现代价函数
def cost(theta, X, y):
    theta = np.matrix(theta)
    X = np.matrix(X)
    y = np.matrix(y)
    first = np.multiply(-y, np.log(sigmoid(X * theta.T)))
    second = np.multiply((1 - y), np.log(1 - sigmoid(X * theta.T)))
    return np.sum(first - second) / (len(X))
 

初始化X,y,$\theta$

In [6]:
# 加一列常数列
data.insert(0, 'Ones', 1)

# 初始化X,y,θ
cols = data.shape[1]
X = data.iloc[:,0:cols-1]
y = data.iloc[:,cols-1:cols]
theta = np.zeros(3)

# 转换X,y的类型
X = np.array(X.values)
y = np.array(y.values)
In [7]:
# 检查矩阵的维度
X.shape, theta.shape, y.shape
Out[7]:
((100, 3), (3,), (100, 1))
In [8]:
# 用初始θ计算代价
cost(theta, X, y)
Out[8]:
0.6931471805599453
In [9]:
# 实现梯度计算的函数(并没有更新θ)
def gradient(theta, X, y):
    theta = np.matrix(theta)
    X = np.matrix(X)
    y = np.matrix(y)
    
    parameters = int(theta.ravel().shape[1])
    grad = np.zeros(parameters)
    
    error = sigmoid(X * theta.T) - y
    
    for i in range(parameters):
        term = np.multiply(error, X[:,i])
        grad[i] = np.sum(term) / len(X)
    
    return grad
 

1.2.3 用工具库计算θ的值

在此前的线性回归中,我们自己写代码实现的梯度下降(ex1的2.2.4的部分)。当时我们写了一个代价函数、计算了他的梯度,然后对他执行了梯度下降的步骤。这次,我们不自己写代码实现梯度下降,我们会调用一个已有的库。这就是说,我们不用自己定义迭代次数和步长,功能会直接告诉我们最优解。
andrew ng在课程中用的是Octave的“fminunc”函数,由于我们使用Python,我们可以用scipy.optimize.fmin_tnc做同样的事情。
(另外,如果对fminunc有疑问的,可以参考下面这篇百度文库的内容https://wenku.baidu.com/view/2f6ce65d0b1c59eef8c7b47a.html
如果一切顺利的话,最有θ对应的代价应该是0.203

In [10]:
import scipy.optimize as opt
result = opt.fmin_tnc(func=cost, x0=theta, fprime=gradient, args=(X, y))
result
Out[10]:
(array([-25.16131863,   0.20623159,   0.20147149]), 36, 0)
 

让我们看看在这个结论下代价函数计算结果是什么个样子~

In [11]:
# 用θ的计算结果代回代价函数计算
cost(result[0], X, y)
Out[11]:
0.20349770158947458
 

画出决策曲线

In [12]:
plotting_x1 = np.linspace(30, 100, 100)
plotting_h1 = ( - result[0][0] - result[0][1] * plotting_x1) / result[0][2]

fig, ax = plt.subplots(figsize=(12,8))
ax.plot(plotting_x1, plotting_h1, 'y', label='Prediction')
ax.scatter(positive['Exam 1'], positive['Exam 2'], s=50, c='b', marker='o', label='Admitted')
ax.scatter(negative['Exam 1'], negative['Exam 2'], s=50, c='r', marker='x', label='Not Admitted')
ax.legend()
ax.set_xlabel('Exam 1 Score')
ax.set_ylabel('Exam 2 Score')
plt.show()
 
 

1.2.4 评价逻辑回归模型

在确定参数之后,我们可以使用这个模型来预测学生是否录取。如果一个学生exam1得分45,exam2得分85,那么他录取的概率应为0.776

In [13]:
# 实现hθ
def hfunc1(theta, X):
    return sigmoid(np.dot(theta.T, X))
hfunc1(result[0],[1,45,85])
Out[13]:
0.7762906238162848
 

另一种评价θ的方法是看模型在训练集上的正确率怎样。写一个predict的函数,给出数据以及参数后,会返回“1”或者“0”。然后再把这个predict函数用于训练集上,看准确率怎样。

In [14]:
# 定义预测函数
def predict(theta, X):
    probability = sigmoid(X * theta.T)
    return [1 if x >= 0.5 else 0 for x in probability]
In [15]:
# 统计预测正确率
theta_min = np.matrix(result[0])
predictions = predict(theta_min, X)
correct = [1 if ((a == 1 and b == 1) or (a == 0 and b == 0)) else 0 for (a, b) in zip(predictions, y)]
accuracy = (sum(map(int, correct)) % len(correct))
print ('accuracy = {0}%'.format(accuracy))
 
accuracy = 89%
 

画出对应曲线

 

2 正则化逻辑回归

 

在训练的第二部分,我们将实现加入正则项提升逻辑回归算法。
设想你是工厂的生产主管,你有一些芯片在两次测试中的测试结果,测试结果决定是否芯片要被接受或抛弃。你有一些历史数据,帮助你构建一个逻辑回归模型。

 

2.1 数据可视化

In [16]:
path =  '/home/kesci/input/andrew_ml_ex22391/ex2data2.txt'
data_init = pd.read_csv(path, header=None, names=['Test 1', 'Test 2', 'Accepted'])
data_init.head()
Out[16]:
 
 Test 1Test 2Accepted
0 0.051267 0.69956 1
1 -0.092742 0.68494 1
2 -0.213710 0.69225 1
3 -0.375000 0.50219 1
4 -0.513250 0.46564 1
In [17]:
positive2 = data_init[data_init['Accepted'].isin([1])]
negative2 = data_init[data_init['Accepted'].isin([0])]

fig, ax = plt.subplots(figsize=(12,8))
ax.scatter(positive2['Test 1'], positive2['Test 2'], s=50, c='b', marker='o', label='Accepted')
ax.scatter(negative2['Test 1'], negative2['Test 2'], s=50, c='r', marker='x', label='Rejected')
ax.legend()
ax.set_xlabel('Test 1 Score')
ax.set_ylabel('Test 2 Score')
plt.show()
 
 

以上图片显示,这个数据集不能像之前一样使用直线将两部分分割。而逻辑回归只适用于线性的分割,所以,这个数据集不适合直接使用逻辑回归。

 

2.2 特征映射

一种更好的使用数据集的方式是为每组数据创造更多的特征。所以我们为每组$x_1,x_2$添加了最高到6次幂的特征

In [18]:
degree = 6
data2 = data_init
x1 = data2['Test 1']
x2 = data2['Test 2']

data2.insert(3, 'Ones', 1)

for i in range(1, degree+1):
    for j in range(0, i+1):
        data2['F' + str(i-j) + str(j)] = np.power(x1, i-j) * np.power(x2, j)
#此处原答案错误较多,已经更正

data2.drop('Test 1', axis=1, inplace=True)
data2.drop('Test 2', axis=1, inplace=True)

data2.head()
Out[18]:
 
 AcceptedOnesF10F01F20F11F02F30F21F12...F23F14F05F60F51F42F33F24F15F06
0 1 1 0.051267 0.69956 0.002628 0.035864 0.489384 0.000135 0.001839 0.025089 ... 0.000900 0.012278 0.167542 1.815630e-08 2.477505e-07 0.000003 0.000046 0.000629 0.008589 0.117206
1 1 1 -0.092742 0.68494 0.008601 -0.063523 0.469143 -0.000798 0.005891 -0.043509 ... 0.002764 -0.020412 0.150752 6.362953e-07 -4.699318e-06 0.000035 -0.000256 0.001893 -0.013981 0.103256
2 1 1 -0.213710 0.69225 0.045672 -0.147941 0.479210 -0.009761 0.031616 -0.102412 ... 0.015151 -0.049077 0.158970 9.526844e-05 -3.085938e-04 0.001000 -0.003238 0.010488 -0.033973 0.110047
3 1 1 -0.375000 0.50219 0.140625 -0.188321 0.252195 -0.052734 0.070620 -0.094573 ... 0.017810 -0.023851 0.031940 2.780914e-03 -3.724126e-03 0.004987 -0.006679 0.008944 -0.011978 0.016040
4 1 1 -0.513250 0.46564 0.263426 -0.238990 0.216821 -0.135203 0.122661 -0.111283 ... 0.026596 -0.024128 0.021890 1.827990e-02 -1.658422e-02 0.015046 -0.013650 0.012384 -0.011235 0.010193

5 rows × 29 columns

 

3.2 代价函数和梯度

这一部分要实现计算逻辑回归的代价函数和梯度的函数。代价函数公式如下:

J(θ)=1m∑i=1m[−y(i)log⁡(hθ(x(i)))−(1−y(i))log⁡(1−hθ(x(i)))]+λ2m∑j=1nθj2


记住$\theta_0$是不需要正则化的,下标从1开始。
梯度的第j个元素的更新公式为:

θ0:=θ0−a1m∑i=1m[hθ(x(i))−y(i)]x0(i)

 

θj:=θj−a1m∑i=1m[hθ(x(i))−y(i)]xj(i)+λmθj


对上面的算法中 j=1,2,...,n 时的更新式子进行调整可得:

θj:=θj(1−aλm)−a1m∑i=1m(hθ(x(i))−y(i))xj(i)


把初始$\theta$(所有元素为0)带入,代价应为0.693

In [19]:
# 实现正则化的代价函数
def costReg(theta, X, y, learningRate):
    theta = np.matrix(theta)
    X = np.matrix(X)
    y = np.matrix(y)
    first = np.multiply(-y, np.log(sigmoid(X * theta.T)))
    second = np.multiply((1 - y), np.log(1 - sigmoid(X * theta.T)))
    reg = (learningRate / (2 * len(X))) * np.sum(np.power(theta[:,1:theta.shape[1]], 2))
    return np.sum(first - second) / len(X) + reg
In [20]:
# 实现正则化的梯度函数
def gradientReg(theta, X, y, learningRate):
    theta = np.matrix(theta)
    X = np.matrix(X)
    y = np.matrix(y)
    
    parameters = int(theta.ravel().shape[1])
    grad = np.zeros(parameters)
    
    error = sigmoid(X * theta.T) - y
    
    for i in range(parameters):
        term = np.multiply(error, X[:,i])
        
        if (i == 0):
            grad[i] = np.sum(term) / len(X)
        else:
            grad[i] = (np.sum(term) / len(X)) + ((learningRate / len(X)) * theta[:,i])
    
    return grad
In [21]:
# 初始化X,y,θ
cols = data2.shape[1]
X2 = data2.iloc[:,1:cols]
y2 = data2.iloc[:,0:1]
theta2 = np.zeros(cols-1)

# 进行类型转换
X2 = np.array(X2.values)
y2 = np.array(y2.values)

# λ设为1
learningRate = 1
In [22]:
# 计算初始代价
costReg(theta2, X2, y2, learningRate)
Out[22]:
0.6931471805599454
 

2.3.1 用工具库求解参数

In [23]:
result2 = opt.fmin_tnc(func=costReg, x0=theta2, fprime=gradientReg, args=(X2, y2, learningRate))
result2
Out[23]:
(array([ 1.27271026,  0.62529965,  1.18111686, -2.01987398, -0.91743189,
        -1.43166928,  0.12393228, -0.36553118, -0.35725404, -0.17516291,
        -1.45817009, -0.05098418, -0.61558555, -0.27469165, -1.19271298,
        -0.24217841, -0.20603299, -0.04466178, -0.27778951, -0.29539514,
        -0.45645982, -1.04319155,  0.02779373, -0.2924487 ,  0.0155576 ,
        -0.32742405, -0.1438915 , -0.92467487]), 32, 1)
 

最后,我们可以使用第1部分中的预测函数来查看我们的方案在训练数据上的准确度。

In [24]:
theta_min = np.matrix(result2[0])
predictions = predict(theta_min, X2)
correct = [1 if ((a == 1 and b == 1) or (a == 0 and b == 0)) else 0 for (a, b) in zip(predictions, y2)]
accuracy = (sum(map(int, correct)) % len(correct))
print ('accuracy = {0}%'.format(accuracy))
 
accuracy = 98%
 

2.4 画出决策的曲线

In [25]:
def hfunc2(theta, x1, x2):
    temp = theta[0][0]
    place = 0
    for i in range(1, degree+1):
        for j in range(0, i+1):
            temp+= np.power(x1, i-j) * np.power(x2, j) * theta[0][place+1]
            place+=1
    return temp
In [26]:
def find_decision_boundary(theta):
    t1 = np.linspace(-1, 1.5, 1000)
    t2 = np.linspace(-1, 1.5, 1000)

    cordinates = [(x, y) for x in t1 for y in t2]
    x_cord, y_cord = zip(*cordinates)
    h_val = pd.DataFrame({'x1':x_cord, 'x2':y_cord})
    h_val['hval'] = hfunc2(theta, h_val['x1'], h_val['x2'])

    decision = h_val[np.abs(h_val['hval']) < 2 * 10**-3]
    return decision.x1, decision.x2
In [27]:
fig, ax = plt.subplots(figsize=(12,8))
ax.scatter(positive2['Test 1'], positive2['Test 2'], s=50, c='b', marker='o', label='Accepted')
ax.scatter(negative2['Test 1'], negative2['Test 2'], s=50, c='r', marker='x', label='Rejected')
ax.set_xlabel('Test 1 Score')
ax.set_ylabel('Test 2 Score')

x, y = find_decision_boundary(result2)
plt.scatter(x, y, c='y', s=10, label='Prediction')
ax.legend()
plt.show()
 
 

2.5 改变λ,观察决策曲线

$\lambda=0$时过拟合

In [28]:
learningRate2 = 0
result3 = opt.fmin_tnc(func=costReg, x0=theta2, fprime=gradientReg, args=(X2, y2, learningRate2))
Out[28]:
(array([   14.60193336,    21.20326682,     4.60748805,  -150.30636263,
          -70.51421716,   -65.71761632,  -167.22986423,  -100.93094956,
          -58.4583472 ,     9.35117823,   538.72438097,   445.25267052,
          633.43046793,   239.567217  ,    92.6608774 ,   300.20568543,
          362.78215934,   440.45538844,   196.63024035,    52.26698467,
          -13.32416223,  -639.85098768,  -782.82561038, -1230.55113233,
         -846.7737968 ,  -793.91524305,  -273.62741174,   -51.4586635 ]),
 280,
 3)
In [29]:
fig, ax = plt.subplots(figsize=(12,8))
ax.scatter(positive2['Test 1'], positive2['Test 2'], s=50, c='b', marker='o', label='Accepted')
ax.scatter(negative2['Test 1'], negative2['Test 2'], s=50, c='r', marker='x', label='Rejected')
ax.set_xlabel('Test 1 Score')
ax.set_ylabel('Test 2 Score')

x, y = find_decision_boundary(result3)
plt.scatter(x, y, c='y', s=10, label='Prediction')
ax.legend()
plt.show()
 
 

$\lambda=100$时欠拟合

In [30]:
learningRate3 = 100
result4 = opt.fmin_tnc(func=costReg, x0=theta2, fprime=gradientReg, args=(X2, y2, learningRate3))
In [31]:
fig, ax = plt.subplots(figsize=(12,8))
ax.scatter(positive2['Test 1'], positive2['Test 2'], s=50, c='b', marker='o', label='Accepted')
ax.scatter(negative2['Test 1'], negative2['Test 2'], s=50, c='r', marker='x', label='Rejected')
ax.set_xlabel('Test 1 Score')
ax.set_ylabel('Test 2 Score')

x, y = find_decision_boundary(result4)
plt.scatter(x, y, c='y', s=10, label='Prediction')
ax.legend()
plt.show()
 
posted @ 2023-03-13 19:04   ̄□ ̄  阅读(74)  评论(0编辑  收藏  举报