05 2021 档案
摘要:BatchNorm, 批规范化,主要用于解决协方差偏移问题,主要分三部分: 计算batch均值和方差 规范化 仿射affine 算法内容如下: 需要说明几点: 均值和方差是batch的统计特性,pytorch中用running_mean和running_var表示 $\gamma \bet
阅读全文
摘要:@ [1] 信息检索语言 信息检索语言是用于描述信息系统中的信息的内容特征,常见的信息检索语言包括分类语言和主题语言。就神经网络架构搜索这个问题来说,最好选择主题语言,可以通过借助自然语言,更具有直观性和概念唯一性。而主题语言分为关键词语言和纯自然语言。 选用关键词语言就要挑选神经网络架构搜索的关键
阅读全文
摘要:【GiantPandaCV导语】Once for all是韩松组非常有影响力的工作,其最大的优点是解耦了训练和搜索过程,可以直接从超网中采样出满足一定资源限制的子网,而不需要重新训练。该工作被ICLR20接收。 0. Info Title: Once-for-All: Train one Netwo
阅读全文
摘要:【前言】现在深度学习项目代码量越来越大,并且单个文件的量也非常的大。笔者总结了一些专家的经验并结合自己看的一些项目,打算总结一下如何探索和深入一个深度学习项目库。笔者pprp,未经允许不得擅自转发。 1. 基础知识 首先,需要保证有一定的深度学习基础知识,吴恩达的深度学习课还有斯坦福大学的CS231
阅读全文
摘要:Parameter : 模型中的一种可以被反向传播更新的参数。 第一种: 直接通过成员变量nn.Parameter()进行创建,会自动注册到parameter中。 def __init__(self): super(MyModel, self).__init__() self.param = nn.
阅读全文
摘要:【前言】Drop Path是NAS中常用到的一种正则化方法,由于网络训练的过程中常常是动态的,Drop Path就成了一个不错的正则化工具,在FractalNet、NASNet等都有广泛使用。 Dropout Dropout是最早的用于解决过拟合的方法,是所有drop类方法的大前辈。Dropout在
阅读全文
摘要:【GiantPandaCV导语】Google Brain提出的NAS领域的Benchmark,是当时第一个公开的网络架构数据集,用于研究神经网络架构搜索。本文首发GiantPandaCV,请不要随意转载。 0. 摘要 神经网络搜索近年来取得进步巨大,但是由于其需要巨大的计算资源,导致很难去复现实验。
阅读全文
摘要:【GiantPandaCV导读】Single Path One Shot(SPOS)是旷视和清华、港科大联合的工作。与之前的工作不同,SPOS可以直接在大型数据集ImageNet上搜索,并且文章还提出了一种缓和权重共享的NAS的解耦策略,让模型能有更好的排序一致性。 代码:https://githu
阅读全文