随笔分类 - 知识点
摘要:【GiantPandaCV导语】通过在Transformer基础上引入Deformable CNN中的可变性能力,在降低模型参数量的同时提升获取大感受野的能力,文内附代码解读。 引言 Transformer由于其更大的感受野能够让其拥有更强的模型表征能力,性能上超越了很多CNN的模型。 然而单纯增大
阅读全文
摘要:【GiantPandaCV导语】与之前BoTNet不同,CvT虽然题目中有卷积的字样,但是实际总体来说依然是以Transformer Block为主的,在Token的处理方面引入了卷积,从而为模型带来的局部性。最终CvT最高拿下了87.7%的Top1准确率。 引言 CvT架构的Motivation也
阅读全文
摘要:【GiantPandaCV导语】收集自RepDistiller中的蒸馏方法,尽可能简单解释蒸馏用到的策略,并提供了实现源码。 1. KD: Knowledge Distillation 全称:Distilling the Knowledge in a Neural Network 链接:https:
阅读全文
摘要:png图片缺乏某些库,导致损坏,或者多余了一些数据会导致以下报错: libpng warning: iCCP: known incorrect sRGB profile libpng warning iccp extra compressed data 一些可能的解决方案: 已有方案 来自:http
阅读全文
摘要:【GiantPandaCV导读】learning rate对模型调优重要性不言而喻,想到超参数调优第一个可能想到的方法就是网格搜索Grid Search,但是这种方法需要大量的计算资源。之前使用fastai的时候发现其集成了一个功能叫lr_finder(), 可以快速找到合适的学习率,本文就主要分析
阅读全文
摘要:【GiantPandaCV导语】这篇是MIT韩松实验室发布的文章,是第一个直接在ImageNet上进行搜索的NAS算法,并且提出了直接在目标硬件上对latency进行优化的方法。相比于同期算法NASNet、MnasNet等,搜索代价降低了200倍。 0. Info Title: ProxylessN
阅读全文
摘要:ICLR 2021 Workshop 接收 Measuring Uncertainty through Bayesian Learning of Deep Neural Network Structure Zhijie Deng, Yucen Luo and Jun Zhu PDF AutoHAS:
阅读全文
摘要:Transforms从torch1.7开始新增了该特性,之前transform进行数据增强的方式是如下的,i.e. 使用compose的方式: default_configure = T.Compose([ T.RandomCrop(32, 4), T.RandomHorizontalFlip(),
阅读全文
摘要:BatchNorm, 批规范化,主要用于解决协方差偏移问题,主要分三部分: 计算batch均值和方差 规范化 仿射affine 算法内容如下: 需要说明几点: 均值和方差是batch的统计特性,pytorch中用running_mean和running_var表示 $\gamma \bet
阅读全文
摘要:【前言】现在深度学习项目代码量越来越大,并且单个文件的量也非常的大。笔者总结了一些专家的经验并结合自己看的一些项目,打算总结一下如何探索和深入一个深度学习项目库。笔者pprp,未经允许不得擅自转发。 1. 基础知识 首先,需要保证有一定的深度学习基础知识,吴恩达的深度学习课还有斯坦福大学的CS231
阅读全文
摘要:【GiantPandaCV导读】Single Path One Shot(SPOS)是旷视和清华、港科大联合的工作。与之前的工作不同,SPOS可以直接在大型数据集ImageNet上搜索,并且文章还提出了一种缓和权重共享的NAS的解耦策略,让模型能有更好的排序一致性。 代码:https://githu
阅读全文
摘要:【GiantPandaCV导语】Neural Network Intelligence 是一个工具包,可以有效帮助用户设计并调优汲取学习模型的神经网络架构,以及超参数。具有易于使用、可扩展、灵活、高效的特点。本文主要讲NNI基础的概念以及一个训练MNIST的入门教程。本文首发于GiantPandaC
阅读全文
摘要:一、 ReStructuredText 语法 介绍:reStructuredText 是一种易于阅读、所见即所得的纯文本标记语言,常被用于编写行内文档,快速创建简单网页,或者作为独立文档存在。 ——David Goodger rst可以转为html,html5,latex,xetex,xml等格式。
阅读全文
摘要:【导语】:在深度强化学习第四篇中,讲了Policy Gradient的理论。通过最终推导得到的公式,本文用PyTorch简单实现以下,并且尽可能搞清楚torch.distribution的使用方法。代码参考了LeeDeepRl-Notes中的实现。 1. 复习 \[ \theta \leftarro
阅读全文
摘要:【GiantPandaCV导读】训练大型的数据集的速度受很多因素影响,由于数据集比较大,每个优化带来的时间提升就不可小觑。硬件方面,CPU、内存大小、GPU、机械硬盘orSSD存储等都会有一定的影响。软件实现方面,PyTorch本身的DataLoader有时候会不够用,需要额外操作,比如使用混合精度
阅读全文
摘要:大概查了一下,没有这方面的总结,所以我结合不久前刚考过的中特课程,总结一下这个复习过程中所用到的策略。 手机 不要看手机,不要看手机,不要看手机,到了图书馆以后,要把手机放到书包里,复习的过程中,不要拿出来看时间。需要时间的话就看手表,否则一不小心就开始刷手机,这是复习的大忌。一般复习的时候都剩余时
阅读全文
摘要:【GiantPandaCV导语】混合精度是一个非常简单并且实用的技术,由百度和谷歌联合发表于ICLR2018,可以让模型以半精度的方式训练模型,既能够降低显存占用,又可以保持精度。这篇文章不是最先提出使用更低精度来进行训练,但是其影响力比较深远,很多现在的方案都是基于这篇文章设计的。 1. 摘要 提
阅读全文
摘要:【GiantPandaCV导语】本文主要介绍最最最基础的tikz命令和一些绘制CNN时需要的基础的LaTeX知识,希望能在尽可能短的时间内学会并实现使用tikz这个LaTeX工具包来绘制卷积神经网络示意图。 之前看到tikz可以画出这种图,感觉特别专业,所以萌发出了解一下tikz的想法。 1. ov
阅读全文
摘要:【GiantPandCV导语】本文将介绍BBuf、小武和笔者一起在过年期间完成的一个目标检测项目,将描述我们模型改进的思路、实验思路、结果汇总和经验性总结。声明:这篇文章经过了三人同意,并且所有创新点也将被公布。此外,由于经验上的不足,可能整个实验思路不够成熟,比不上CV大组的严谨性和完备性,如有问
阅读全文
摘要:《CenterNet原理与代码解析》是首发于GiantPandaCV公众号的电子书教程,由pprp总结并整理CenterNet相关解析,这本电子书是基于非官方的CenterNet实现,https://github.com/zzzxxxttt/pytorch_simple_CenterNet_45,这
阅读全文