闲
太菜了怎么办。
\[\sum_{x=2}^{\infty} \frac{x(x-1)}{2^x}=4
\]
只想到一种很麻烦的证法,但是正好前两天学到的。
两次扰动法做完了?
令 \(f(x)=\sum_{i=2}^{x} \frac{i(i-1)}{2^i}\)
\[ \begin{aligned}
f(x)+\frac{(x+1)x}{2^{x+1}}&=\frac{1}{2}+\sum_{i=2}^{x}\frac{i(i+1)}{2^{i+1}}\\
&=\frac{1}{2}+\sum_{i=2}^{x}\frac{i(i-1)}{2^{i+1}}+\sum_{i=2}^{x}\frac{i}{2^{i}}\\
&=\frac{1}{2}+\frac{f(x)}{2}+\sum_{i=2}^{x}\frac{i}{2^{i}}
\end{aligned} \]
令 \(g(x)=\sum_{i=2}^{x}\frac{i}{2^{i}}\)
\[ \begin{aligned}
g(x)+\frac{x+1}{2^{x+1}}&=\frac{1}{2}+\sum_{i=2}^{x}\frac{i}{2^{i+1}}+\sum_{i=2}^{x}\frac{1}{2^{i+1}}\\
&=\frac{3}{4}+\frac{g(x)}{2}-\frac{1}{2^x}
\end{aligned} \]
当 \(x \to \infty\) 时,\(\frac{x+1}{2^{x+1}},\frac{(x+1)x}{2^{x+1}},\frac{1}{2^x}\) 都趋近于 \(0\),\(g(x)=\frac{3}{2},f(x)=4\)