CIFAR-10模型训练

利用上一篇文章搭建的卷积神经网络进行模型训练。

将搭建的卷积神经网络放在model.py中。

import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear
class Gao(nn.Module):
def __init__(self):
super(Gao, self).__init__()
self.model = nn.Sequential(
Conv2d(3, 32, 5, stride=1, padding=2),
MaxPool2d(2),
Conv2d(32, 32, 5, stride=1, padding=2),
MaxPool2d(2),
Conv2d(32, 64, 5, stride=1, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self, x):
x = self.model(x)
return x
if __name__ == '__main__':
gao=Gao()
input = torch.ones((64, 3, 32, 32))
output = gao(input)
print(output.shape)

下面是训练模型的主要代码:

import torch
import torchvision
from torch.utils.tensorboard import SummaryWriter
from model import *
# 训练数据集
from torch import nn
from torch.utils.data import DataLoader
train_data = torchvision.datasets.CIFAR10(root="./data", train=True,
transform=torchvision.transforms.ToTensor(),
download=True)
# 测试数据集
test_data = torchvision.datasets.CIFAR10(root="./data", train=False,
transform=torchvision.transforms.ToTensor(),
download=True)
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))
# 将数据加载进Dataloader
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
# 创建神经网路
gao = Gao()
# 损失函数
loss_fn = nn.CrossEntropyLoss()
# 学习速率
learning_rate = 1e-2
# 优化器
optim = torch.optim.SGD(params=gao.parameters(), lr=learning_rate)
# 记录训练次数
total_train_step = 0
# 记录测试次数
total_test_step = 0
# 训练轮数
epoch = 10
# 添加tensorboard
writer = SummaryWriter("D:\\DeepLearning\\gao\\deep\\learning\\logs")
for i in range(epoch):
print("--------第{}轮开始--------".format(i+1))
# 训练步骤开始
for data in train_dataloader:
images, targets = data
# 根据输出值计算损失函数
outputs = gao(images)
loss = loss_fn(outputs, targets)
# 优化器调优模型
optim.zero_grad()
loss.backward()
optim.step()
total_train_step += 1
if total_train_step % 100 == 0:
print("训练次数{},loss:{}".format(total_train_step, loss.item()))
writer.add_scalar("train_loss", loss.item(), total_train_step)
# 测试步骤开始
total_test_loss = 0
total_accuracy = 0
with torch.no_grad():
for data in test_dataloader:
images, targets = data
outputs = gao(images)
loss = loss_fn(outputs, targets)
total_test_loss += loss
accuracy = (outputs.argmax(1) == targets).sum()
total_accuracy += accuracy
print("整体测试集上的loss:{}".format(total_test_loss))
print("整体测试集上的accuracy:{}".format(total_accuracy/train_data_size))
writer.add_scalar("test_loss", total_test_loss, total_test_step)
writer.add_scalar("test_accuracy", total_accuracy/train_data_size, total_test_step)
total_test_step += 1
# torch.save(gao, "gao_{}".format(i))
# print("模型已保存")
writer.close()

控制台输出如下:

打开tensorboard查看模型训练途中的具体数据变化情况:

下面分别是训练集的Loss、测试集的Loss、以及正确率的变化情况:

 

 

 

posted @   破忒头头  阅读(33)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 单元测试从入门到精通
· 上周热点回顾(3.3-3.9)
· winform 绘制太阳,地球,月球 运作规律
点击右上角即可分享
微信分享提示