CIFAR-10模型训练
利用上一篇文章搭建的卷积神经网络进行模型训练。
将搭建的卷积神经网络放在model.py中。
import torch from torch import nn from torch.nn import Conv2d, MaxPool2d, Flatten, Linear class Gao(nn.Module): def __init__(self): super(Gao, self).__init__() self.model = nn.Sequential( Conv2d(3, 32, 5, stride=1, padding=2), MaxPool2d(2), Conv2d(32, 32, 5, stride=1, padding=2), MaxPool2d(2), Conv2d(32, 64, 5, stride=1, padding=2), MaxPool2d(2), Flatten(), Linear(1024, 64), Linear(64, 10) ) def forward(self, x): x = self.model(x) return x if __name__ == '__main__': gao=Gao() input = torch.ones((64, 3, 32, 32)) output = gao(input) print(output.shape)
下面是训练模型的主要代码:
import torch import torchvision from torch.utils.tensorboard import SummaryWriter from model import * # 训练数据集 from torch import nn from torch.utils.data import DataLoader train_data = torchvision.datasets.CIFAR10(root="./data", train=True, transform=torchvision.transforms.ToTensor(), download=True) # 测试数据集 test_data = torchvision.datasets.CIFAR10(root="./data", train=False, transform=torchvision.transforms.ToTensor(), download=True) train_data_size = len(train_data) test_data_size = len(test_data) print("训练数据集的长度为:{}".format(train_data_size)) print("测试数据集的长度为:{}".format(test_data_size)) # 将数据加载进Dataloader train_dataloader = DataLoader(train_data, batch_size=64) test_dataloader = DataLoader(test_data, batch_size=64) # 创建神经网路 gao = Gao() # 损失函数 loss_fn = nn.CrossEntropyLoss() # 学习速率 learning_rate = 1e-2 # 优化器 optim = torch.optim.SGD(params=gao.parameters(), lr=learning_rate) # 记录训练次数 total_train_step = 0 # 记录测试次数 total_test_step = 0 # 训练轮数 epoch = 10 # 添加tensorboard writer = SummaryWriter("D:\\DeepLearning\\gao\\deep\\learning\\logs") for i in range(epoch): print("--------第{}轮开始--------".format(i+1)) # 训练步骤开始 for data in train_dataloader: images, targets = data # 根据输出值计算损失函数 outputs = gao(images) loss = loss_fn(outputs, targets) # 优化器调优模型 optim.zero_grad() loss.backward() optim.step() total_train_step += 1 if total_train_step % 100 == 0: print("训练次数{},loss:{}".format(total_train_step, loss.item())) writer.add_scalar("train_loss", loss.item(), total_train_step) # 测试步骤开始 total_test_loss = 0 total_accuracy = 0 with torch.no_grad(): for data in test_dataloader: images, targets = data outputs = gao(images) loss = loss_fn(outputs, targets) total_test_loss += loss accuracy = (outputs.argmax(1) == targets).sum() total_accuracy += accuracy print("整体测试集上的loss:{}".format(total_test_loss)) print("整体测试集上的accuracy:{}".format(total_accuracy/train_data_size)) writer.add_scalar("test_loss", total_test_loss, total_test_step) writer.add_scalar("test_accuracy", total_accuracy/train_data_size, total_test_step) total_test_step += 1 # torch.save(gao, "gao_{}".format(i)) # print("模型已保存") writer.close()
控制台输出如下:
打开tensorboard查看模型训练途中的具体数据变化情况:
下面分别是训练集的Loss、测试集的Loss、以及正确率的变化情况:
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 单元测试从入门到精通
· 上周热点回顾(3.3-3.9)
· winform 绘制太阳,地球,月球 运作规律