算法-heapq模块优先队列

heapq模块, 优先队列,小顶堆,最少值放在顶部,值越小,优先级越高

heapq.heappop(heap) 从堆中弹出最小的元素,并重新调整

heapq.heappush(heapitem)新增元素添加到堆中,不会调整

heapq.heapify(x) 在线性时间内将列表x就地转换为堆
heapq.nlargest(n, iterable[, key]) 返回一个包含n个最大元素的列表,iterable是一个可迭代对象
heapq.nsmallest(n, iterable[, key])返回n个最小元素的列表
heapq.heapreplace(heap, item) 从堆中弹出并返回最小的项,并推入新项。堆大小不变。如果堆为空,则会引发IndexError
对于较小的n值执行得最好。对于较大的n值,使用sorted()函数效率更高。此外,当n==1时,使用内置的min()和max()函数效率更高。

>>> from heapq import heappush, heappop
>>> heap = []
>>> data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
>>> for item in data:
...     heappush(heap, item)
...
>>> ordered = []
>>> while heap:
...     ordered.append(heappop(heap))
...
>>> ordered
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> data.sort()
>>> data == ordered
True

>>> heap = []
>>> data = [(1, 'J'), (4, 'N'), (3, 'H'), (2, 'O')]
>>> for item in data:
...     heappush(heap, item)
...
>>> while heap:
...     print(heappop(heap)[1])
J
O
H
N

  

posted @ 2020-07-27 17:23  一切都是当下  阅读(156)  评论(0编辑  收藏  举报