LeetCode ---- 474. 一和零「二维01背包」

题目描述

给你一个二进制字符串数组 strs 和两个整数 m 和 n 。
请你找出并返回 strs 的最大子集的大小,该子集中 最多 有 m 个 0 和 n 个 1 。
如果 x 的所有元素也是 y 的元素,集合 x 是集合 y 的 子集 。
题目链接

示例

输入:strs = ["10", "0001", "111001", "1", "0"], m = 5, n = 3
输出:4
解释:最多有 5 个 0 和 3 个 1 的最大子集是 {"10","0001","1","0"} ,因此答案是 4 。
其他满足题意但较小的子集包括 {"0001","1"} 和 {"10","1","0"} 。{"111001"} 不满足题意,因为它含 4 个 1 ,大于 n 的值 3 。

思路

假设字符串由 1 组成,最大长度为 m,便是01背包问题,最大容量为 m, 每个字符串的长度为占用空间,最大可使用次数为1
可使用基础01背包的递推公式: dp[i] = max(dp[i-room] + 1, dp[i])
接下来加上有 0 的字符串,于是形成了二维的递推方程:dp[i][j] = dp[i-count0][j-count1] + 1, dp[i][j]

代码

class Solution {
    public int findMaxForm(String[] strs, int m, int n) {
        int[][] dp = new int[m+1][n+1];
        for(int i = 0; i < strs.length; ++i) {
            int zero = 0, one = 0;
            for(int j = 0; j < strs[i].length(); ++j) {
                if(strs[i].charAt(j) == '0') ++zero;
                else ++one;
            }
            for(int j = m; j >= zero; --j) {
                for(int k = n; k >= one; --k) {
                    int tmp = dp[j-zero][k-one] + 1;
                    if(dp[j][k] < tmp)
                        dp[j][k] = tmp;
                }
            }
        }
        return dp[m][n];
    }
}
posted @ 2020-11-19 20:08  Posase  阅读(164)  评论(0编辑  收藏  举报