10分钟了解 pandas - pandas官方文档译文 [原创]
10 Minutes to pandas
英文原文:https://pandas.pydata.org/pandas-docs/stable/10min.html
版本:pandas 0.23.4
采集日期:2019-01-16
注:10分钟只够看完,囫囵吞枣。
参阅:10分钟学pandas
本文是对 pandas 的简短介绍,主要面向新用户。更加复杂的用法可以在 Cookbook 中查看。
按惯例导入语句可如下所示:
In [1]: import pandas as pd In [2]: import numpy as np In [3]: import matplotlib.pyplot as plt
创建对象
请参阅数据结构介绍。
以下将通过传入列表来创建一个 Series 对象,且让 pandas 创建默认的整数索引:
In [4]: s = pd.Series([1,3,5,np.nan,6,8]) In [5]: s Out[5]: 0 1.0 1 3.0 2 5.0 3 NaN 4 6.0 5 8.0 dtype: float64
以下将通过传入 NumPy 数组来创建一个 DataFrame 对象,同时指定了日期索引和列的标题(Label)。
In [6]: dates = pd.date_range('20130101', periods=6) In [7]: dates Out[7]: DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04', '2013-01-05', '2013-01-06'], dtype='datetime64[ns]', freq='D') In [8]: df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD')) In [9]: df Out[9]: A B C D 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 2013-01-06 -0.673690 0.113648 -1.478427 0.524988
以下将通过传入字典对象来创建一个 DataFrame 对象,字典对象可被转换为类似序列的结构。
In [10]: df2 = pd.DataFrame({ 'A' : 1., ....: 'B' : pd.Timestamp('20130102'), ....: 'C' : pd.Series(1,index=list(range(4)),dtype='float32'), ....: 'D' : np.array([3] * 4,dtype='int32'), ....: 'E' : pd.Categorical(["test","train","test","train"]), ....: 'F' : 'foo' }) ....: In [11]: df2 Out[11]: A B C D E F 0 1.0 2013-01-02 1.0 3 test foo 1 1.0 2013-01-02 1.0 3 train foo 2 1.0 2013-01-02 1.0 3 test foo 3 1.0 2013-01-02 1.0 3 train foo
以上生成的 DataFrame 中,列的 dtypes 属性各不相同。
In [12]: df2.dtypes Out[12]: A float64 B datetime64[ns] C float32 D int32 E category F object dtype: object
如果正在使用 IPython,列名(以及公共属性)的 tab 键补全功能将会自动启用。下面列出了一部分将会自动补全的属性:
In [13]: df2.<TAB>
df2.A df2.bool
df2.abs df2.boxplot
df2.add df2.C
df2.add_prefix df2.clip
df2.add_suffix df2.clip_lower
df2.align df2.clip_upper
df2.all df2.columns
df2.any df2.combine
df2.append df2.combine_first
df2.apply df2.compound
df2.applymap df2.consolidate
df2.D
如上所述,A、B、C 和 D 列都能用 tab 键自动补全。其实 E 也可以,只是为了尽量简洁,其余的属性未被列出罢了。
查看数据
请参阅基础知识部分。
以下是查看 DataFrame 中第一行和最后一行数据的方法:
In [14]: df.head() Out[14]: A B C D 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 In [15]: df.tail(3) Out[15]: A B C D 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 2013-01-06 -0.673690 0.113648 -1.478427 0.524988
以下方法将把索引、列和底层的 NumPy 数据显示出来:
In [16]: df.index Out[16]: DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04', '2013-01-05', '2013-01-06'], dtype='datetime64[ns]', freq='D') In [17]: df.columns Out[17]: Index(['A', 'B', 'C', 'D'], dtype='object') In [18]: df.values Out[18]: array([[ 0.4691, -0.2829, -1.5091, -1.1356], [ 1.2121, -0.1732, 0.1192, -1.0442], [-0.8618, -2.1046, -0.4949, 1.0718], [ 0.7216, -0.7068, -1.0396, 0.2719], [-0.425 , 0.567 , 0.2762, -1.0874], [-0.6737, 0.1136, -1.4784, 0.525 ]])
describe() 将显示数据的统计信息速览。
In [19]: df.describe() Out[19]: A B C D count 6.000000 6.000000 6.000000 6.000000 mean 0.073711 -0.431125 -0.687758 -0.233103 std 0.843157 0.922818 0.779887 0.973118 min -0.861849 -2.104569 -1.509059 -1.135632 25% -0.611510 -0.600794 -1.368714 -1.076610 50% 0.022070 -0.228039 -0.767252 -0.386188 75% 0.658444 0.041933 -0.034326 0.461706 max 1.212112 0.567020 0.276232 1.071804
下面对数据作转置:
In [20]: df.T Out[20]: 2013-01-01 2013-01-02 2013-01-03 2013-01-04 2013-01-05 2013-01-06 A 0.469112 1.212112 -0.861849 0.721555 -0.424972 -0.673690 B -0.282863 -0.173215 -2.104569 -0.706771 0.567020 0.113648 C -1.509059 0.119209 -0.494929 -1.039575 0.276232 -1.478427 D -1.135632 -1.044236 1.071804 0.271860 -1.087401 0.524988
按某个坐标轴向(这里是列)进行排序:
In [21]: df.sort_index(axis=1, ascending=False) Out[21]: D C B A 2013-01-01 -1.135632 -1.509059 -0.282863 0.469112 2013-01-02 -1.044236 0.119209 -0.173215 1.212112 2013-01-03 1.071804 -0.494929 -2.104569 -0.861849 2013-01-04 0.271860 -1.039575 -0.706771 0.721555 2013-01-05 -1.087401 0.276232 0.567020 -0.424972 2013-01-06 0.524988 -1.478427 0.113648 -0.673690
以下按值进行排序:
In [22]: df.sort_values(by='B') Out[22]: A B C D 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-06 -0.673690 0.113648 -1.478427 0.524988 2013-01-05 -0.424972 0.567020 0.276232 -1.087401
选取数据(Selection)
注意:虽然用于数据选取和赋值的标准 Python / Numpy 表达式比较直观且可用于交互模式,但对于生产代码还是建议采用经过优化的 pandas 数据访问方法:.at、.iat、.loc和.iloc。
请参阅如何进行索引的文档:进行索引及选取数据 、多重索引 / 高级索引。
数据读取
下面选取一列数据,这将生成一个 Series 对象,等效于 df.A:
In [23]: df['A'] Out[23]: 2013-01-01 0.469112 2013-01-02 1.212112 2013-01-03 -0.861849 2013-01-04 0.721555 2013-01-05 -0.424972 2013-01-06 -0.673690 Freq: D, Name: A, dtype: float64
下面通过 [] 选取数据,这会对数据行进行切片。
In [24]: df[0:3] Out[24]: A B C D 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 In [25]: df['20130102':'20130104'] Out[25]: A B C D 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 2013-01-04 0.721555 -0.706771 -1.039575 0.271860
用标题选取数据
详情请参阅用标题查询数据。
以下利用标题获取断面数据(cross section):
In [26]: df.loc[dates[0]] Out[26]: A 0.469112 B -0.282863 C -1.509059 D -1.135632 Name: 2013-01-01 00:00:00, dtype: float64
用标题按多个轴向选取数据:
In [27]: df.loc[:,['A','B']] Out[27]: A B 2013-01-01 0.469112 -0.282863 2013-01-02 1.212112 -0.173215 2013-01-03 -0.861849 -2.104569 2013-01-04 0.721555 -0.706771 2013-01-05 -0.424972 0.567020 2013-01-06 -0.673690 0.113648
下面将显示按标题选取的切片数据,两边端点的数据也会包含在内:
In [28]: df.loc['20130102':'20130104',['A','B']] Out[28]: A B 2013-01-02 1.212112 -0.173215 2013-01-03 -0.861849 -2.104569 2013-01-04 0.721555 -0.706771
降低返回对象的数据维度:
In [29]: df.loc['20130102',['A','B']] Out[29]: A 1.212112 B -0.173215 Name: 2013-01-02 00:00:00, dtype: float64
以下将获取实际数据(scalar )值:
In [30]: df.loc[dates[0],'A'] Out[30]: 0.46911229990718628
下面将快速读取实际数据值(与上一个方法等效):
In [31]: df.at[dates[0],'A'] Out[31]: 0.46911229990718628
用位置选取数据
详情请参阅用位置选取数据。
以下用整数参数表示的位置选取数据:
In [32]: df.iloc[3] Out[32]: A 0.721555 B -0.706771 C -1.039575 D 0.271860 Name: 2013-01-04 00:00:00, dtype: float64
用整数表示的切片选取数据,与 numpy / python 的做法类似:
In [33]: df.iloc[3:5,0:2] Out[33]: A B 2013-01-04 0.721555 -0.706771 2013-01-05 -0.424972 0.567020
用整数表示的位置列表选取数据,类似于 numpy / python 的风格:
In [34]: df.iloc[[1,2,4],[0,2]] Out[34]: A C 2013-01-02 1.212112 0.119209 2013-01-03 -0.861849 -0.494929 2013-01-05 -0.424972 0.276232
以下明确指定了行切片:
In [35]: df.iloc[1:3,:] Out[35]: A B C D 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
明确指定了列切片:
In [36]: df.iloc[:,1:3] Out[36]: B C 2013-01-01 -0.282863 -1.509059 2013-01-02 -0.173215 0.119209 2013-01-03 -2.104569 -0.494929 2013-01-04 -0.706771 -1.039575 2013-01-05 0.567020 0.276232 2013-01-06 0.113648 -1.478427
明确要求读取某一项数据值:
In [37]: df.iloc[1,1]
Out[37]: -0.17321464905330858
快速读取某一项数据(与上一方法等效):
In [38]: df.iat[1,1]
Out[38]: -0.17321464905330858
布尔索引
以下利用某一列的值选取数据。
In [39]: df[df.A > 0] Out[39]: A B C D 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-04 0.721555 -0.706771 -1.039575 0.271860
下面从 DataFrame 中选取符合某个布尔条件的值。
In [40]: df[df > 0] Out[40]: A B C D 2013-01-01 0.469112 NaN NaN NaN 2013-01-02 1.212112 NaN 0.119209 NaN 2013-01-03 NaN NaN NaN 1.071804 2013-01-04 0.721555 NaN NaN 0.271860 2013-01-05 NaN 0.567020 0.276232 NaN 2013-01-06 NaN 0.113648 NaN 0.524988 Using the isin() method for filtering:
利用 isin() 方法过滤数据:
In [41]: df2 = df.copy() In [42]: df2['E'] = ['one', 'one','two','three','four','three'] In [43]: df2 Out[43]: A B C D E 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 one 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 one 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 three 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four 2013-01-06 -0.673690 0.113648 -1.478427 0.524988 three In [44]: df2[df2['E'].isin(['two','four'])] Out[44]: A B C D E 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four
赋值(Setting)
赋值一列新数据时,将会自动根据索引进行数据匹配(align)。
In [45]: s1 = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130102', periods=6)) In [46]: s1 Out[46]: 2013-01-02 1 2013-01-03 2 2013-01-04 3 2013-01-05 4 2013-01-06 5 2013-01-07 6 Freq: D, dtype: int64 In [47]: df['F'] = s1
根据标题赋值:
In [48]: df.at[dates[0],'A'] = 0
根据位置赋值:
In [49]: df.iat[0,1] = 0
用 NumPy 数组赋值:
In [50]: df.loc[:,'D'] = np.array([5] * len(df))
上述赋值操作的结果将如下所示。
In [51]: df Out[51]: A B C D F 2013-01-01 0.000000 0.000000 -1.509059 5 NaN 2013-01-02 1.212112 -0.173215 0.119209 5 1.0 2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0 2013-01-04 0.721555 -0.706771 -1.039575 5 3.0 2013-01-05 -0.424972 0.567020 0.276232 5 4.0 2013-01-06 -0.673690 0.113648 -1.478427 5 5.0
以下是带有 where 操作的赋值。
In [52]: df2 = df.copy() In [53]: df2[df2 > 0] = -df2 In [54]: df2 Out[54]: A B C D F 2013-01-01 0.000000 0.000000 -1.509059 -5 NaN 2013-01-02 -1.212112 -0.173215 -0.119209 -5 -1.0 2013-01-03 -0.861849 -2.104569 -0.494929 -5 -2.0 2013-01-04 -0.721555 -0.706771 -1.039575 -5 -3.0 2013-01-05 -0.424972 -0.567020 -0.276232 -5 -4.0 2013-01-06 -0.673690 -0.113648 -1.478427 -5 -5.0
缺失数据(Missing Data)
pandas 主要采用 np.nan 表示缺失数据。 在计算过程中,默认不会涵盖这类值。请参阅缺失数据部分。
重建索引操作可以修改、添加、删除指定轴向上的索引,并会返回数据的副本。
In [55]: df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E']) In [56]: df1.loc[dates[0]:dates[1],'E'] = 1 In [57]: df1 Out[57]: A B C D F E 2013-01-01 0.000000 0.000000 -1.509059 5 NaN 1.0 2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0 2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0 NaN 2013-01-04 0.721555 -0.706771 -1.039575 5 3.0 NaN
以下将删除所有包含缺失数据的行。
In [58]: df1.dropna(how='any') Out[58]: A B C D F E 2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0
下面将给缺失数据填入值。
In [59]: df1.fillna(value=5) Out[59]: A B C D F E 2013-01-01 0.000000 0.000000 -1.509059 5 5.0 1.0 2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0 2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0 5.0 2013-01-04 0.721555 -0.706771 -1.039575 5 3.0 5.0
以下将获取数据是否为 nan 的布尔值。
In [60]: pd.isna(df1) Out[60]: A B C D F E 2013-01-01 False False False False True False 2013-01-02 False False False False False False 2013-01-03 False False False False False True 2013-01-04 False False False False False True
运算
请参阅二元运算的基础知识。
统计运算
运算通常都不涉及缺失数据。
以下将执行描述性统计(descriptive statistic):
In [61]: df.mean() Out[61]: A -0.004474 B -0.383981 C -0.687758 D 5.000000 F 3.000000 dtype: float64
下面按另一轴向进行同样的统计:
In [62]: df.mean(1) Out[62]: 2013-01-01 0.872735 2013-01-02 1.431621 2013-01-03 0.707731 2013-01-04 1.395042 2013-01-05 1.883656 2013-01-06 1.592306 Freq: D, dtype: float64
以下将对多个对象进行运算,他们维数不同且需要做数据匹配。并且 pandas 还会自动沿着指定维度将运算传递下去(broadcast)。
In [63]: s = pd.Series([1,3,5,np.nan,6,8], index=dates).shift(2) In [64]: s Out[64]: 2013-01-01 NaN 2013-01-02 NaN 2013-01-03 1.0 2013-01-04 3.0 2013-01-05 5.0 2013-01-06 NaN Freq: D, dtype: float64 In [65]: df.sub(s, axis='index') Out[65]: A B C D F 2013-01-01 NaN NaN NaN NaN NaN 2013-01-02 NaN NaN NaN NaN NaN 2013-01-03 -1.861849 -3.104569 -1.494929 4.0 1.0 2013-01-04 -2.278445 -3.706771 -4.039575 2.0 0.0 2013-01-05 -5.424972 -4.432980 -4.723768 0.0 -1.0 2013-01-06 NaN NaN NaN NaN NaN
Apply
以下将对数据应用多个函数:
In [66]: df.apply(np.cumsum) Out[66]: A B C D F 2013-01-01 0.000000 0.000000 -1.509059 5 NaN 2013-01-02 1.212112 -0.173215 -1.389850 10 1.0 2013-01-03 0.350263 -2.277784 -1.884779 15 3.0 2013-01-04 1.071818 -2.984555 -2.924354 20 6.0 2013-01-05 0.646846 -2.417535 -2.648122 25 10.0 2013-01-06 -0.026844 -2.303886 -4.126549 30 15.0 In [67]: df.apply(lambda x: x.max() - x.min()) Out[67]: A 2.073961 B 2.671590 C 1.785291 D 0.000000 F 4.000000 dtype: float64
值的分布情况(Histogram)
更多信息请参阅分布和离散度。
In [68]: s = pd.Series(np.random.randint(0, 7, size=10)) In [69]: s Out[69]: 0 4 1 2 2 1 3 2 4 6 5 4 6 4 7 6 8 4 9 4 dtype: int64 In [70]: s.value_counts() Out[70]: 4 5 6 2 2 2 1 1 dtype: int64
字符串方法
Series 在 str 属性中配备了一组字符串处理方法,可以轻松地对数组的每个元素进行操作,下面的代码片段给出了演示。 请注意,str 中的模式匹配通常默认使用正则表达式(在某些情况下一定会使用)。更多信息请参阅 向量化的字符串方法.。
In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat']) In [72]: s.str.lower() Out[72]: 0 a 1 b 2 c 3 aaba 4 baca 5 NaN 6 caba 7 dog 8 cat dtype: object
数据合并(merge)
合并(concat)
pandas 提供了多种数据合并手段,在 join / merge 类操作时,可以轻松地将 Series、DataFrame、Panel 对象与多种索引设置逻辑、相关代数函数组合在一起使用。
请参阅数据合并。
下面用 concat() 函数将多个 pandas 对象拼接在一起。
In [73]: df = pd.DataFrame(np.random.randn(10, 4)) In [74]: df Out[74]: 0 1 2 3 0 -0.548702 1.467327 -1.015962 -0.483075 1 1.637550 -1.217659 -0.291519 -1.745505 2 -0.263952 0.991460 -0.919069 0.266046 3 -0.709661 1.669052 1.037882 -1.705775 4 -0.919854 -0.042379 1.247642 -0.009920 5 0.290213 0.495767 0.362949 1.548106 6 -1.131345 -0.089329 0.337863 -0.945867 7 -0.932132 1.956030 0.017587 -0.016692 8 -0.575247 0.254161 -1.143704 0.215897 9 1.193555 -0.077118 -0.408530 -0.862495 # break it into pieces In [75]: pieces = [df[:3], df[3:7], df[7:]] In [76]: pd.concat(pieces) Out[76]: 0 1 2 3 0 -0.548702 1.467327 -1.015962 -0.483075 1 1.637550 -1.217659 -0.291519 -1.745505 2 -0.263952 0.991460 -0.919069 0.266046 3 -0.709661 1.669052 1.037882 -1.705775 4 -0.919854 -0.042379 1.247642 -0.009920 5 0.290213 0.495767 0.362949 1.548106 6 -1.131345 -0.089329 0.337863 -0.945867 7 -0.932132 1.956030 0.017587 -0.016692 8 -0.575247 0.254161 -1.143704 0.215897 9 1.193555 -0.077118 -0.408530 -0.862495
连接(join)
这是 SQL 风格的合并。请参阅数据库风格的连接操作。
In [77]: left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]}) In [78]: right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]}) In [79]: left Out[79]: key lval 0 foo 1 1 foo 2 In [80]: right Out[80]: key rval 0 foo 4 1 foo 5 In [81]: pd.merge(left, right, on='key') Out[81]: key lval rval 0 foo 1 4 1 foo 1 5 2 foo 2 4 3 foo 2 5
下面给出另一个例子:
In [82]: left = pd.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]}) In [83]: right = pd.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]}) In [84]: left Out[84]: key lval 0 foo 1 1 bar 2 In [85]: right Out[85]: key rval 0 foo 4 1 bar 5 In [86]: pd.merge(left, right, on='key') Out[86]: key lval rval 0 foo 1 4 1 bar 2 5
追加(append)
向 DataFrame 添加数据行。参见添加数据。
In [87]: df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D']) In [88]: df Out[88]: A B C D 0 1.346061 1.511763 1.627081 -0.990582 1 -0.441652 1.211526 0.268520 0.024580 2 -1.577585 0.396823 -0.105381 -0.532532 3 1.453749 1.208843 -0.080952 -0.264610 4 -0.727965 -0.589346 0.339969 -0.693205 5 -0.339355 0.593616 0.884345 1.591431 6 0.141809 0.220390 0.435589 0.192451 7 -0.096701 0.803351 1.715071 -0.708758 In [89]: s = df.iloc[3] In [90]: df.append(s, ignore_index=True) Out[90]: A B C D 0 1.346061 1.511763 1.627081 -0.990582 1 -0.441652 1.211526 0.268520 0.024580 2 -1.577585 0.396823 -0.105381 -0.532532 3 1.453749 1.208843 -0.080952 -0.264610 4 -0.727965 -0.589346 0.339969 -0.693205 5 -0.339355 0.593616 0.884345 1.591431 6 0.141809 0.220390 0.435589 0.192451 7 -0.096701 0.803351 1.715071 -0.708758 8 1.453749 1.208843 -0.080952 -0.264610
分组(group)
通过分组操作要完成的是涉及以下一个或多个步骤的操作过程:
- 根据某些条件将数据拆分到多个组中
- 对每组数据单独应用某个函数
- 将结果并入某个数据结构中
参见分组操作。
In [91]: df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar', ....: 'foo', 'bar', 'foo', 'foo'], ....: 'B' : ['one', 'one', 'two', 'three', ....: 'two', 'two', 'one', 'three'], ....: 'C' : np.random.randn(8), ....: 'D' : np.random.randn(8)}) ....: In [92]: df Out[92]: A B C D 0 foo one -1.202872 -0.055224 1 bar one -1.814470 2.395985 2 foo two 1.018601 1.552825 3 bar three -0.595447 0.166599 4 foo two 1.395433 0.047609 5 bar two -0.392670 -0.136473 6 foo one 0.007207 -0.561757 7 foo three 1.928123 -1.623033
下面先执行分组,再对结果调用 sum() 函数。
In [93]: df.groupby('A').sum() Out[93]: C D A bar -2.802588 2.42611 foo 3.146492 -0.63958
先根据多个数据列进行分组操作,形成多级索引,然后还能再调用 sum 函数。
In [94]: df.groupby(['A','B']).sum() Out[94]: C D A B bar one -1.814470 2.395985 three -0.595447 0.166599 two -0.392670 -0.136473 foo one -1.195665 -0.616981 three 1.928123 -1.623033 two 2.414034 1.600434
重塑(Reshape)
压缩(Stack)
In [95]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz', ....: 'foo', 'foo', 'qux', 'qux'], ....: ['one', 'two', 'one', 'two', ....: 'one', 'two', 'one', 'two']])) ....: In [96]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second']) In [97]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B']) In [98]: df2 = df[:4] In [99]: df2 Out[99]: A B first second bar one 0.029399 -0.542108 two 0.282696 -0.087302 baz one -1.575170 1.771208 two 0.816482 1.100230
stack()
方法会“压缩” DataFrame 数据列的层级。
In [100]: stacked = df2.stack() In [101]: stacked Out[101]: first second bar one A 0.029399 B -0.542108 two A 0.282696 B -0.087302 baz one A -1.575170 B 1.771208 two A 0.816482 B 1.100230 dtype: float64
针对“已压缩”的 DataFrame 或 Series(带有 MultiIndex 作 index ),stack() 的逆操作是 unstack(),默认情况下将取消最后一级压缩操作:
In [102]: stacked.unstack() Out[102]: A B first second bar one 0.029399 -0.542108 two 0.282696 -0.087302 baz one -1.575170 1.771208 two 0.816482 1.100230 In [103]: stacked.unstack(1) Out[103]: second one two first bar A 0.029399 0.282696 B -0.542108 -0.087302 baz A -1.575170 0.816482 B 1.771208 1.100230 In [104]: stacked.unstack(0) Out[104]: first bar baz second one A 0.029399 -1.575170 B -0.542108 1.771208 two A 0.282696 0.816482 B -0.087302 1.100230
数据透视表(Pivot Table)
请参阅数据透视表。
In [105]: df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3, .....: 'B' : ['A', 'B', 'C'] * 4, .....: 'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2, .....: 'D' : np.random.randn(12), .....: 'E' : np.random.randn(12)}) .....: In [106]: df Out[106]: A B C D E 0 one A foo 1.418757 -0.179666 1 one B foo -1.879024 1.291836 2 two C foo 0.536826 -0.009614 3 three A bar 1.006160 0.392149 4 one B bar -0.029716 0.264599 5 one C bar -1.146178 -0.057409 6 two A foo 0.100900 -1.425638 7 three B foo -1.035018 1.024098 8 one C foo 0.314665 -0.106062 9 one A bar -0.773723 1.824375 10 two B bar -1.170653 0.595974 11 three C bar 0.648740 1.167115
由上述数据生成数据透视表是非常简单的。
In [107]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C']) Out[107]: C bar foo A B one A -0.773723 1.418757 B -0.029716 -1.879024 C -1.146178 0.314665 three A 1.006160 NaN B NaN -1.035018 C 0.648740 NaN two A NaN 0.100900 B -1.170653 NaN C NaN 0.536826
时间 Series
为了能在改变采样频率时执行重采样操作(例如将每秒数据转为5分钟数据),pandas 提供了简单、强大且高效的功能。 这在财务应用中非常常见,但不仅限于此。请参阅时间 Series 。
In [108]: rng = pd.date_range('1/1/2012', periods=100, freq='S') In [109]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng) In [110]: ts.resample('5Min').sum() Out[110]: 2012-01-01 25083 Freq: 5T, dtype: int64
时区的表示方式:
In [111]: rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D') In [112]: ts = pd.Series(np.random.randn(len(rng)), rng) In [113]: ts Out[113]: 2012-03-06 0.464000 2012-03-07 0.227371 2012-03-08 -0.496922 2012-03-09 0.306389 2012-03-10 -2.290613 Freq: D, dtype: float64 In [114]: ts_utc = ts.tz_localize('UTC') In [115]: ts_utc Out[115]: 2012-03-06 00:00:00+00:00 0.464000 2012-03-07 00:00:00+00:00 0.227371 2012-03-08 00:00:00+00:00 -0.496922 2012-03-09 00:00:00+00:00 0.306389 2012-03-10 00:00:00+00:00 -2.290613 Freq: D, dtype: float64
以下将转换为其他时区:
In [116]: ts_utc.tz_convert('US/Eastern') Out[116]: 2012-03-05 19:00:00-05:00 0.464000 2012-03-06 19:00:00-05:00 0.227371 2012-03-07 19:00:00-05:00 -0.496922 2012-03-08 19:00:00-05:00 0.306389 2012-03-09 19:00:00-05:00 -2.290613 Freq: D, dtype: float64
各种时间间隔(Span)表示方式之间的转换:
In [117]: rng = pd.date_range('1/1/2012', periods=5, freq='M') In [118]: ts = pd.Series(np.random.randn(len(rng)), index=rng) In [119]: ts Out[119]: 2012-01-31 -1.134623 2012-02-29 -1.561819 2012-03-31 -0.260838 2012-04-30 0.281957 2012-05-31 1.523962 Freq: M, dtype: float64 In [120]: ps = ts.to_period() In [121]: ps Out[121]: 2012-01 -1.134623 2012-02 -1.561819 2012-03 -0.260838 2012-04 0.281957 2012-05 1.523962 Freq: M, dtype: float64 In [122]: ps.to_timestamp() Out[122]: 2012-01-01 -1.134623 2012-02-01 -1.561819 2012-03-01 -0.260838 2012-04-01 0.281957 2012-05-01 1.523962 Freq: MS, dtype: float64
在时间段(Period)和时间戳(Timestamp)之间进行转换,可以使用一些方便的算术运算函数。 在下面的示例中,将用11月作为年度结束的按季度结算频率转换为用每季度结束次月的上午9点作为按季度结算频率:
In [123]: prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV') In [124]: ts = pd.Series(np.random.randn(len(prng)), prng) In [125]: ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9 In [126]: ts.head() Out[126]: 1990-03-01 09:00 -0.902937 1990-06-01 09:00 0.068159 1990-09-01 09:00 -0.057873 1990-12-01 09:00 -0.368204 1991-03-01 09:00 -1.144073 Freq: H, dtype: float64
分类(Categorical)
pandas 可在 DataFrame 中加入分类信息。完整的文档请参阅分类简介和 API 文档。
In [127]: df = pd.DataFrame({"id":[1,2,3,4,5,6], "raw_grade":['a', 'b', 'b', 'a', 'a', 'e']})
下面将 raw_grade 转换为 category 数据类型。
In [128]: df["grade"] = df["raw_grade"].astype("category") In [129]: df["grade"] Out[129]: 0 a 1 b 2 b 3 a 4 a 5 e Name: grade, dtype: category Categories (3, object): [a, b, e]
下面将类别重命名为更有意义的名字(原地给 Series.cat.categories 赋值!)。
In [130]: df["grade"].cat.categories = ["very good", "good", "very bad"]
对类别重新排序并同时把类别补全(Series.cat 中的方法默认返回一个新 Series 对象)。
In [131]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"]) In [132]: df["grade"] Out[132]: 0 very good 1 good 2 good 3 very good 4 very good 5 very bad Name: grade, dtype: category Categories (5, object): [very bad, bad, medium, good, very good]
以下排序是按类别的顺序进行的,而不是按照单词的顺序。
In [133]: df.sort_values(by="grade") Out[133]: id raw_grade grade 5 6 e very bad 1 2 b good 2 3 b good 0 1 a very good 3 4 a very good 4 5 a very good
按类别分组时,没有数据的类别也会显示出来。
In [134]: df.groupby("grade").size() Out[134]: grade very bad 1 bad 0 medium 0 good 2 very good 3 dtype: int64
绘制图表(Plot)
请参阅绘制图表的文档。
In [135]: ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000)) In [136]: ts = ts.cumsum() In [137]: ts.plot() Out[137]: <matplotlib.axes._subplots.AxesSubplot at 0x7f213444c048>
在 DataFrame 中,用 plot() 方法绘制所有带标题的列非常方便:
In [138]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, .....: columns=['A', 'B', 'C', 'D']) .....: In [139]: df = df.cumsum() In [140]: plt.figure(); df.plot(); plt.legend(loc='best') Out[140]: <matplotlib.legend.Legend at 0x7f212489a780>
输入输出数据
CSV
下面写入为 csv 文件:
In [141]: df.to_csv('foo.csv')
下面从 csv 文件读取数据:
In [142]: pd.read_csv('foo.csv') Out[142]: Unnamed: 0 A B C D 0 2000-01-01 0.266457 -0.399641 -0.219582 1.186860 1 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953 2 2000-01-03 -1.734933 0.530468 2.060811 -0.515536 3 2000-01-04 -1.555121 1.452620 0.239859 -1.156896 4 2000-01-05 0.578117 0.511371 0.103552 -2.428202 5 2000-01-06 0.478344 0.449933 -0.741620 -1.962409 6 2000-01-07 1.235339 -0.091757 -1.543861 -1.084753 .. ... ... ... ... ... 993 2002-09-20 -10.628548 -9.153563 -7.883146 28.313940 994 2002-09-21 -10.390377 -8.727491 -6.399645 30.914107 995 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740 996 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439 997 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593 998 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560 999 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368 [1000 rows x 5 columns]
HDF5
读写 HDF 存储文件。
下面写入为 HDF5 存储文件。
In [143]: df.to_hdf('foo.h5','df')
从 HDF5 存储文件读取数据。
In [144]: pd.read_hdf('foo.h5','df') Out[144]: A B C D 2000-01-01 0.266457 -0.399641 -0.219582 1.186860 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953 2000-01-03 -1.734933 0.530468 2.060811 -0.515536 2000-01-04 -1.555121 1.452620 0.239859 -1.156896 2000-01-05 0.578117 0.511371 0.103552 -2.428202 2000-01-06 0.478344 0.449933 -0.741620 -1.962409 2000-01-07 1.235339 -0.091757 -1.543861 -1.084753 ... ... ... ... ... 2002-09-20 -10.628548 -9.153563 -7.883146 28.313940 2002-09-21 -10.390377 -8.727491 -6.399645 30.914107 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368 [1000 rows x 4 columns]
Excel
读写 Excel 文件。
以下写入为 Excel 文件。
In [145]: df.to_excel('foo.xlsx', sheet_name='Sheet1')
从 Excel 文件读取数据。
In [146]: pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA']) Out[146]: A B C D 2000-01-01 0.266457 -0.399641 -0.219582 1.186860 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953 2000-01-03 -1.734933 0.530468 2.060811 -0.515536 2000-01-04 -1.555121 1.452620 0.239859 -1.156896 2000-01-05 0.578117 0.511371 0.103552 -2.428202 2000-01-06 0.478344 0.449933 -0.741620 -1.962409 2000-01-07 1.235339 -0.091757 -1.543861 -1.084753 ... ... ... ... ... 2002-09-20 -10.628548 -9.153563 -7.883146 28.313940 2002-09-21 -10.390377 -8.727491 -6.399645 30.914107 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368 [1000 rows x 4 columns]
答疑(Gotcha)
当执行某项操作时,或许会出现类似以下异常情况:
>>> if pd.Series([False, True, False]): print("I was true") Traceback ... ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all().
详细的解释及对策请参阅比较操作。
另请参阅答疑。