PEP 3141 数值类型的层次结构 -- Python官方文档译文 [原创]

PEP 3141 -- 数值类型的层次结构(A Type Hierarchy for Numbers)

英文原文:https://www.python.org/dev/peps/pep-3141
采集日期:2020-02-27

PEP: 3141
Title: A Type Hierarchy for Numbers
Author: Jeffrey Yasskin jyasskin@google.com
Status: Final
Type: Standards Track
Created: 23-Apr-2007
Post-History: 25-Apr-2007, 16-May-2007, 02-Aug-2007

目录

摘要(Abstract)


本提案定义了数值类抽象基类(ABC,Abstract Base Class,PEP 3119)的层次结构(hierarchy)。这里提出了 Number :> Complex :> Real :> Rational :> Integral 的层级,A :> B 意味着“A 是 B 的超类型”。这种层次结构的制定受到了 Scheme 数值类型塔的启发。

原由(Rationale)


用数值作参数的函数应能确定这些数值的属性,并且当语言中增加了基于类型的重载时,应能依据参数类型实现函数重载。比如,切片(slice)操作要求参数为整数类型(Integral),而 math 模块中的函数则要求参数为实数类型(Real)。

规范(Specification)


本文定义了一组抽象基类,并给出一些方法的通常实现方式。这里用到了 PEP 3119 中的术语,但这种层次结构对于任何用于类定义的系统性解决方案都颇具意义。

标准库中的类型检查过程应该采用这些类,而不是采用具体(concrete)的内置类型。

数值类(Numeric Classses)


下面就从一个 Number 类开始吧,以便大家把数值的类型先模糊掉。该类只是为了便于重载,并不支持任何操作。

    class Number(metaclass=ABCMeta): pass

复数的大多数实现类都是可散列(hashable)的,但如果要绝对可靠,则必须显式地进行检查,验证数值类型的层次结构是否支持可变(mutable)数值。

    class Complex(Number):
        """Complex defines the operations that work on the builtin complex type.

        In short, those are: conversion to complex, bool(), .real, .imag,
        +, -, *, /, **, abs(), .conjugate(), ==, and !=.

        If it is given heterogenous arguments, and doesn't have special
        knowledge about them, it should fall back to the builtin complex
        type as described below.
        """

        @abstractmethod
        def __complex__(self):
            """Return a builtin complex instance."""

        def __bool__(self):
            """True if self != 0."""
            return self != 0

        @abstractproperty
        def real(self):
            """Retrieve the real component of this number.

            This should subclass Real.
            """
            raise NotImplementedError

        @abstractproperty
        def imag(self):
            """Retrieve the real component of this number.

            This should subclass Real.
            """
            raise NotImplementedError

        @abstractmethod
        def __add__(self, other):
            raise NotImplementedError

        @abstractmethod
        def __radd__(self, other):
            raise NotImplementedError

        @abstractmethod
        def __neg__(self):
            raise NotImplementedError

        def __pos__(self):
            """Coerces self to whatever class defines the method."""
            raise NotImplementedError

        def __sub__(self, other):
            return self + -other

        def __rsub__(self, other):
            return -self + other

        @abstractmethod
        def __mul__(self, other):
            raise NotImplementedError

        @abstractmethod
        def __rmul__(self, other):
            raise NotImplementedError

        @abstractmethod
        def __div__(self, other):
            """a/b; should promote to float or complex when necessary."""
            raise NotImplementedError

        @abstractmethod
        def __rdiv__(self, other):
            raise NotImplementedError

        @abstractmethod
        def __pow__(self, exponent):
            """a**b; should promote to float or complex when necessary."""
            raise NotImplementedError

        @abstractmethod
        def __rpow__(self, base):
            raise NotImplementedError

        @abstractmethod
        def __abs__(self):
            """Returns the Real distance from 0."""
            raise NotImplementedError

        @abstractmethod
        def conjugate(self):
            """(x+y*i).conjugate() returns (x-y*i)."""
            raise NotImplementedError

        @abstractmethod
        def __eq__(self, other):
            raise NotImplementedError

        # __ne__ is inherited from object and negates whatever __eq__ does.

实数 Real 的抽象基类表明,数值在层次结构中处于实数的位置,并且支持内置 float 类型的全部操作。除了 NaN(本文基本忽略)之外,实数是完全有序的。

    class Real(Complex):
        """To Complex, Real adds the operations that work on real numbers.

        In short, those are: conversion to float, trunc(), math.floor(),
        math.ceil(), round(), divmod(), //, %, <, <=, >, and >=.

        Real also provides defaults for some of the derived operations.
        """

        # XXX What to do about the __int__ implementation that's
        # currently present on float?  Get rid of it?

        @abstractmethod
        def __float__(self):
            """Any Real can be converted to a native float object."""
            raise NotImplementedError

        @abstractmethod
        def __trunc__(self):
            """Truncates self to an Integral.

            Returns an Integral i such that:
              * i>=0 iff self>0;
              * abs(i) <= abs(self);
              * for any Integral j satisfying the first two conditions,
                abs(i) >= abs(j) [i.e. i has "maximal" abs among those].
            i.e. "truncate towards 0".
            """
            raise NotImplementedError

        @abstractmethod
        def __floor__(self):
            """Finds the greatest Integral <= self."""
            raise NotImplementedError

        @abstractmethod
        def __ceil__(self):
            """Finds the least Integral >= self."""
            raise NotImplementedError

        @abstractmethod
        def __round__(self, ndigits:Integral=None):
            """Rounds self to ndigits decimal places, defaulting to 0.

            If ndigits is omitted or None, returns an Integral,
            otherwise returns a Real, preferably of the same type as
            self. Types may choose which direction to round half. For
            example, float rounds half toward even.

            """
            raise NotImplementedError

        def __divmod__(self, other):
            """The pair (self // other, self % other).

            Sometimes this can be computed faster than the pair of
            operations.
            """
            return (self // other, self % other)

        def __rdivmod__(self, other):
            """The pair (self // other, self % other).

            Sometimes this can be computed faster than the pair of
            operations.
            """
            return (other // self, other % self)

        @abstractmethod
        def __floordiv__(self, other):
            """The floor() of self/other. Integral."""
            raise NotImplementedError

        @abstractmethod
        def __rfloordiv__(self, other):
            """The floor() of other/self."""
            raise NotImplementedError

        @abstractmethod
        def __mod__(self, other):
            """self % other

            See
            https://mail.python.org/pipermail/python-3000/2006-May/001735.html
            and consider using "self/other - trunc(self/other)"
            instead if you're worried about round-off errors.
            """
            raise NotImplementedError

        @abstractmethod
        def __rmod__(self, other):
            """other % self"""
            raise NotImplementedError

        @abstractmethod
        def __lt__(self, other):
            """< on Reals defines a total ordering, except perhaps for NaN."""
            raise NotImplementedError

        @abstractmethod
        def __le__(self, other):
            raise NotImplementedError

        # __gt__ and __ge__ are automatically done by reversing the arguments.
        # (But __le__ is not computed as the opposite of __gt__!)

        # Concrete implementations of Complex abstract methods.
        # Subclasses may override these, but don't have to.

        def __complex__(self):
            return complex(float(self))

        @property
        def real(self):
            return +self

        @property
        def imag(self):
            return 0

        def conjugate(self):
            """Conjugate is a no-op for Reals."""
            return +self

应把 Demo/classes/Rat.py 清除掉,将其升级为标准库中的 rational.py。这样就能实现有理数的抽象基类 Rational 了。

    class Rational(Real, Exact):
        """.numerator and .denominator should be in lowest terms."""

        @abstractproperty
        def numerator(self):
            raise NotImplementedError

        @abstractproperty
        def denominator(self):
            raise NotImplementedError

        # Concrete implementation of Real's conversion to float.
        # (This invokes Integer.__div__().)

        def __float__(self):
            return self.numerator / self.denominator

最后是整数类型:

    class Integral(Rational):
        """Integral adds a conversion to int and the bit-string operations."""

        @abstractmethod
        def __int__(self):
            raise NotImplementedError

        def __index__(self):
            """__index__() exists because float has __int__()."""
            return int(self)

        def __lshift__(self, other):
            return int(self) << int(other)

        def __rlshift__(self, other):
            return int(other) << int(self)

        def __rshift__(self, other):
            return int(self) >> int(other)

        def __rrshift__(self, other):
            return int(other) >> int(self)

        def __and__(self, other):
            return int(self) & int(other)

        def __rand__(self, other):
            return int(other) & int(self)

        def __xor__(self, other):
            return int(self) ^ int(other)

        def __rxor__(self, other):
            return int(other) ^ int(self)

        def __or__(self, other):
            return int(self) | int(other)

        def __ror__(self, other):
            return int(other) | int(self)

        def __invert__(self):
            return ~int(self)

        # Concrete implementations of Rational and Real abstract methods.
        def __float__(self):
            """float(self) == float(int(self))"""
            return float(int(self))

        @property
        def numerator(self):
            """Integers are their own numerators."""
            return +self

        @property
        def denominator(self):
            """Integers have a denominator of 1."""
            return 1

运算方法和魔法方法的改动(Changes to operations and magic methods)


为了支持 float 和 int (Real 和 Integral)之间更细微的差别,下面给出一些新的魔法方法,以供相应的库函数调用。这些方法都会返回 Integral 而非 Real。

  1. __trunc__(self),由新的内置方法 trunc(x) 调用,返回 0 和 x 之间离 x 最近的整数。

  2. __floor__(self),由 math.floor(x) 调用,返回 <= x 的最大整数。

  3. __ceil__(self),由 math.ceil(x) 调用,返回 >= x 的最大整数。

  4. __round__(self),由 round(x) 调用,返回离 x 最近的整数,半数取整将依数据类型而定。在 3.0 版中 float 将会修改为半数向偶数取整。这还有一个带两个参数的版本 __round__(self, ndigits),由 round(x, ndigits) 调用,将会返回实数。

在 2.6 版中,math.floormath.ceilround 将仍旧返回浮点数。

float 实现的 int() 转换等效于 trunc()。通常 int() 转换应该先尝试 __int__(),若不存在再尝试 __trunc__()

complex.__{divmod,mod,floordiv,int,float}__ 也消失了。若是能提供一个好的错误信息就完美了,但更重要的是别再出现在 help(complex) 里了。

实现类型时的注意事项(Notes for type implementors)


实现时应注意让相等的数值确实相等,并将他们散列为相同值。如果实数有两种不同的扩展实现,就可能有些微妙了。比如,复数类型如下实现 hash() 就较为合理:

        def __hash__(self):
            return hash(complex(self))

但对那些超出内置复数范围或精度的值应该多加小心。

加入其他数值型抽象基类(Adding More Numeric ABCs)


当然,数值型还可能会有更多的抽象基类,如果不考虑添加这些类的能力,数值类型的层次结构会很差劲。比如可以在 ComplexReal 之间加入以下 MyFoo

    class MyFoo(Complex): ...
    MyFoo.register(Real)

算术运算的实现(Implementing the arithmetic operations)


在混合运算时,要么调用两个参数类型已知的实现,要么先把两个参数都转换为最接近的内置类型再执行运算,这便是应该实现的算术运算。对于整型的子类型,这意味着 addradd 应该定义如下:

    class MyIntegral(Integral):

        def __add__(self, other):
            if isinstance(other, MyIntegral):
                return do_my_adding_stuff(self, other)
            elif isinstance(other, OtherTypeIKnowAbout):
                return do_my_other_adding_stuff(self, other)
            else:
                return NotImplemented

        def __radd__(self, other):
            if isinstance(other, MyIntegral):
                return do_my_adding_stuff(other, self)
            elif isinstance(other, OtherTypeIKnowAbout):
                return do_my_other_adding_stuff(other, self)
            elif isinstance(other, Integral):
                return int(other) + int(self)
            elif isinstance(other, Real):
                return float(other) + float(self)
            elif isinstance(other, Complex):
                return complex(other) + complex(self)
            else:
                return NotImplemented

对于复数类的子类,混合运算有五种不同的情况。这里将把上述所有未引用 MyIntegral 和 OtherTypeIKnowAbout 的代码作为“样板”(boilerplate)。a 将会是 A 的实例,而 AComplex 的子类型(a : A <: Complex),同样 b : B <: Complex。于是 a + b 将会被如下处理:

  1. 如果 A 定义了可以接受 b 的 add 方法,万事大吉。
  2. 如果 A 降级(fall back)到采用样板代码,并要由 add 返回结果值,那么就算 B 定义了更明智的 radd 也会被忽略,于是样板代码应该返回 add 得出的 NotImplemented。(或者 A 可能压根儿就不去实现 add
  3. 然后就轮到 B 的 radd。如果能接受 a 则万事大吉。
  4. 如果 B 降级到采用样板代码,因为没有其他方法可供尝试,所以这时会采用默认的实现代码。
  5. 如果 B <: A,Python 会在 A.__add__ 之前先尝试调用 B.__radd__。这种做法没有问题,因为 B 的方法是在了解 A 的情况下实现的,因此它能够在传递给 Complex 之前处理这些实例。

如果 A<:ComplexB<:Real 不再共用其他信息,那么共用内置 Complex 类型的相关运算方法就是合理的,两者的 radd 都会落到 Complex 中,因此 a+b == b+a

未被接受的其他提案(Rejected Alternatives)


在 Number 形成之前,本 PEP 的最初版本曾经定义了一种受 Haskell Numeric Prelude 启发而得的数值类型层次结构,其中包括 MonoidUnderPlus、AdditiveGroup、Ring、Field,以及之前提及的其他几种数值类型。原本是希望这些对使用向量和矩阵的人有用,但是 NumPy 社区确实对此不感兴趣,同时还遇到了一个问题,即便 xX <: MonoidUnderPlus 的实例,y 也是 Y <: MonoidUnderPlus 的实例,但 x + y 仍有可能没有意义。

于是后来 Number 又增加了更多分支,将高斯整数(Gaussian Integer)和 Z/nZ 之类的数值包含了进去,他们可能属于 Complex 但不一定要支持除法之类的运算。社区认为对于 Python 而言这种做法太复杂了,因此本提案现在缩小了规模,更接近于 Scheme 数值类型塔

Decimal 类型(The Decimal Type)


经与作者协商,决定目前不应将 Decimal 类型加入数值类型塔中。

参考文献(References)


抽象基类介绍(http://www.python.org/dev/peps/pep-3119/)

可能的 Python 3K 类树?Bill Janssen 写的 Wiki(http://wiki.python.org/moin/AbstractBaseClasses)

NumericPrelude:数值类层次结构的实验性替代方案(http://darcs.haskell.org/numericprelude/docs/html/index.html)

Scheme 数值类型塔(https://groups.csail.mit.edu/mac/ftpdir/scheme-reports/r5rs-html/r5rs_8.html#SEC50)

致谢(Acknowledgements)


感谢 Neal Norwitz 第一时间鼓励我写下本 PEP,感谢 Travis Oliphant 指出 Numpy 用户对数(algebraic)的概念真不太在意,感谢 Alan Isaac 提醒我 Scheme 已经完成了本文相关体系的构建,感谢 Guido van Rossum 和邮件列表中的很多人帮我完善了概念。

posted on 2020-03-05 12:02  呆呆大虾  阅读(891)  评论(0编辑  收藏  举报

导航