java(9)并发编程
整理自《java 并发编程的艺术》
1. 上下文切换
即使是单核处理器也支持多线程执行代码,CPU通过给每个线程分配CPU时间片来实现这个机制。时间片是CPU分配给各个线程的时间,因为时间片非常短,所以CPU通过不停地切换线程执行,让我们感觉多个线程是同时执行的,时间片一般是几十毫秒(ms)。
CPU通过时间片分配算法来循环执行任务,当前任务执行一个时间片后会切换到下一个任务。但是,在切换前会保存上一个任务的状态,以便下次切换回这个任务时,可以再加载这个任务的状态。所以任务从保存到再加载的过程就是一次上下文切换
2. 多线程一定快吗?
public class ConcurrencyTest { private static final long count = 1000000000l; public static void main(String[] args) throws InterruptedException { concurrency(); serial(); } private static void concurrency() throws InterruptedException { long start = System.currentTimeMillis(); Thread thread = new Thread(new Runnable() { @Override public void run() { int a = 0; for (long i = 0; i < count; i++) { a += 5; } } }); //开启线程循环 thread.start(); //在主线程中执行的循环count次 int b = 0; for (long i = 0; i < count; i++) { b--; } long time = System.currentTimeMillis() - start; thread.join(); System.out.println("concurrency :" + time+"ms,b="+b); } private static void serial() { long start = System.currentTimeMillis(); int a = 0; for (long i = 0; i < count; i++) { a += 5; } int b = 0; for (long i = 0; i < count; i++) { b--; } long time = System.currentTimeMillis() - start; System.out.println(" serial :" + time+"ms,b="+b+",a="+a); } }
3. 测试上下文切换次数和时长
* 使用Lmbench3可以测量上下文切换的时长 * 使用vmstat可以测量上下文切换的次数 procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu----- r b swpd free buff cache si so bi bo in cs us sy id wa st 0 0 239444 190120 201124 13106568 0 0 276 20 1 1 1 0 99 0 0 0 0 239444 190120 201124 13106596 0 0 1000 0 1246 2407 1 0 99 0 0 1 0 239444 190128 201124 13106596 0 0 1000 0 1261 2421 1 1 98 0 0 0 0 239444 190128 201124 13106604 0 0 1000 40 1220 2410 1 1 99 0 0 1 0 239444 190128 201124 13106604 0 0 1000 60 1252 2426 1 1 98 1 0 0 0 239444 190208 201124 13106604 0 0 1000 24 1239 2455 1 1 98 1 0 注:CS(Content Switch)表示上下文切换的次数,从上面的测试结果中我们可以看到,上下文每1秒切换2000多次。
4. 如何减少上下文切换
减少上下文切换的方法有无锁并发编程、CAS算法、使用最少线程和使用协程
5. 减少上下文切换实战
* 本节将通过减少线上大量WAITING的线程,来减少上下文切换次数 第一步:用jstack命令dump线程信息,看看pid为3117的进程里的线程都在做什么。 sudo -u admin /opt/ifeve/java/bin/jstack 31177 > /home/tengfei.fangtf/dump17 第二步:统计所有线程分别处于什么状态,发现300多个线程处于WAITING(onobject-monitor)状态。 [tengfei.fangtf@ifeve ~]$ grep java.lang.Thread.State dump17 | awk '{print $2$3$4$5}'| sort | uniq -c 39 RUNNABLE 21 TIMED_WAITING(onobjectmonitor) 6 TIMED_WAITING(parking) 51 TIMED_WAITING(sleeping) 305 WAITING(onobjectmonitor) 3 WAITING(parking) 第三步:打开dump文件查看处于WAITING(onobjectmonitor)的线程在做什么。发现这些线程基本全是JBOSS的工作线程,在await。说明JBOSS线程池里线程接收到的任务太少,大量线程都闲着。 "http-0.0.0.0-7001-97" daemon prio=10 tid=0x000000004f6a8000 nid=0x555e in Object.wait() [0x0000000052423000] java.lang.Thread.State: WAITING (on object monitor) at java.lang.Object.wait(Native Method) - waiting on <0x00000007969b2280> (a org.apache.tomcat.util.net.AprEndpoint$Worker) at java.lang.Object.wait(Object.java:485) at org.apache.tomcat.util.net.AprEndpoint$Worker.await(AprEndpoint.java:1464) - locked <0x00000007969b2280> (a org.apache.tomcat.util.net.AprEndpoint$Worker) at org.apache.tomcat.util.net.AprEndpoint$Worker.run(AprEndpoint.java:1489) at java.lang.Thread.run(Thread.java:662) 第四步:减少JBOSS的工作线程数,找到JBOSS的线程池配置信息,将maxThreads降到100。 第五步:重启JBOSS,再dump线程信息,然后统计WAITING(on object monitor)的线程,发现减少了175个。 WAITING的线程少了,系统上下文切换的次数就会少,因为每一次从WAITTING到RUNNABLE都会进行一次上下文的切换。读者也可以使用vmstat命令测试一下
6. 定位死锁
* 一旦出现死锁,业务是可感知的,因为不能继续提供服务了,那么只能通过dump线程查看到底是哪个线程出现了问题,以下线程信息告诉我们是DeadLockDemo类的第42行和第31行引起的死锁 "Thread-2" prio=5 tid=7fc0458d1000 nid=0x116c1c000 waiting for monitor entry [116c1b000] java.lang.Thread.State: BLOCKED (on object monitor) at com.ifeve.book.forkjoin.DeadLockDemo$2.run(DeadLockDemo.java:42) - waiting to lock <7fb2f3ec0> (a java.lang.String) - locked <7fb2f3ef8> (a java.lang.String) at java.lang.Thread.run(Thread.java:695) "Thread-1" prio=5 tid=7fc0430f6800 nid=0x116b19000 waiting for monitor entry [116b18000] java.lang.Thread.State: BLOCKED (on object monitor) at com.ifeve.book.forkjoin.DeadLockDemo$1.run(DeadLockDemo.java:31) - waiting to lock <7fb2f3ef8> (a java.lang.String) - locked <7fb2f3ec0> (a java.lang.String) at java.lang.Thread.run(Thread.java:695)